MATLAB转移矩阵法仿真,利用转移矩阵和MATLAB求解一维薛定谔方程的一种简捷方法...

引言在半导体量子器件的分析和设计中,需要计算薛定谔方程,转移矩阵方法是常见的求解途径之一[1,2]。转移矩阵方法是较为基于抽象的矩阵迭代计算,处理比较琐杂。由于转移矩阵方法的实质仍是求解线性方程组,因此可以舍弃矩阵表达,而直接以线性方程组分析和描述。借助MATLAB强大的矩阵计算功能,可以显著简化利用转移矩阵法求解一维薛定谔方程的过程。1一维薛定谔方程求解过程中的转移矩阵概念一维定态薛定谔波动方程如下:()222d20dmEVxx+?????=(1)式中:(x)为波函数(x,t)的空间部分;V(x)为势能函数;?为约化普朗克常数;m为粒子质量;E为能量。一般情况下,式(1)没有解析解,需要做数值计算。从计算角度来看,由于E为常数,如果V(x)也为常数,则求解过程显著简化。为此,可如图1所示,将求解空间均匀划分为N个区域,使得V(x)在每个区域内近似为常数,于是式(1)可以写为:222d0dxj+kjj=(j=1,2,…,N)(2)式中:kj称为波数,并有:()1/22jjmEVk=?????(3)(1)()jj2jVxVxV=?+(4)123N-1Nx1x2x3x4xN?1xNxN+1图1将求解区域划分为N等份Fig.1SolutionspaceisdividedintoNevenlyintervals利用MATLAB的dsolve()命令,可求出式(2)的通解为:j(x)=C1sin(kjx)+C2cos(kjx)(5)式中:C1、C2为待定系数。用MATLAB可以验证,将下列复指数函数:j(x)=Cexp(ikjx)(6)和j(x)=C2j-1exp(ikjx)+C2jexp(-ikjx)(7)它们代入式(2),波动方程仍然成立,说明上述复指数函数也是波动方程的通解。分析中一般选用式(7)。在各区间的交界处(x=xj,j=2,3,…,N),波函数及其一阶导数连续,故有:文献中有关转移矩阵方法的表述一般是基于较为抽象的矩阵迭代计算。鉴于其实质仍是求解线性方程组,可将式(9)加上边界条件(x1)=(a)、(xN+1)=(b)后展开,如式(10)所示。111211112212322422exp()exp()()exp()exp()exp()+?=+???exp()0CikxCikxaCikxCikxCikxCikx?=231221212NNNNNNNNNNNNCikxCikxCikxCikx(10)21121exp()exp()exp()exp()0exp()exp()()NNNNNN?+++????=+?=1CikxCikxbCk?1122112ikxCkikx32224222exp()exp()exp()exp()0CkikxCkikx11()()()()jjjjjjjjxxxx??==(8)NNNNNNNN式(8)若以矩阵表示,可以写为:23112211212exp()exp()exp()exp()0NNNNNNNNCkikxCkikxCkikxCkikx?+????=?+??=1exp(i)jj23222121jjjjjj上述方程组可以用矩阵形式记为:MC=B(11)jjjj(9)()a?11jjjC0232211exp(i)exp(i)exp(i)exp(i)exp(i)jjjjj12C?jjj,C,()Bb?(12)212exp(i)exp(i)jjjjjkxCCkxCCkxkxkkxCCkkxkkxCCkkx?=?=?其中:1234MMMMM????=?0由于C2j-3、C2j-2以及xj、kj-1、kj均为已知量,故可从式(9)中求

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值