matlab 最大似然估计二项式分布,最大似然法估计二项式分布参数

原标题:最大似然法估计二项式分布参数

前面我们学习了解了最大似然法求解正态分布参数,求解指数分布参数。今天我们再来看看最大似然法如何求解二项式分布参数。

1.二项式分布与似然值估计公式

二项分布基本公式求发生某件事情的概率:

50abdefa9244e281b26f13ff3a3a8ab9.png

如在人们对两种口味饮料无偏好时,即人们喜欢香橙口味的概率p=0.5,喜欢葡萄口味的概率p=0.5,那么7个人中4个人喜欢香橙口味的概率为0.273。计算公式如下:

05e8e710225ee5a2f33cce0e8f7fbce0.png

似然值公式求某件事发生的环境概率:

如7个人中有4个人喜欢香橙口味饮料,在人们对两种口味饮料无偏好时,也就是喜欢两种口味饮料的概率p=0.5,那么p=0.5对应的似然值为0.273。计算公式如下:

001abe58bd786e43a188b1a0c5c0b442.png

二项式分布公式与似然值公式的异同:

相同点:等式左边的写法是一样的;

不同点:

等式右边,“|”右侧的固定条件不同,也就是已知条件不同。在二项式分布公式中,固定条件为人们喜欢香橙口味的概率p=0.5,其他询问的人数。在似然值公式中,固定的条件是7个人中4个人喜欢香橙口味。“|”左边的变量不同,在二项式公式中,变量是询问人数中共有几人喜欢香橙口味;在似然值公式中,变量是人们喜欢香橙口味饮料的概率。

通过对比,能知道似然值与分布公式的重要意义: 似然值公式是通过已发生的事件,推导产生该事件环境的可能性;而 分布公式是已知环境,推导该环境下发生某件事的概率。

2.最大似然法求解二项式分布参数

「二项式分布的似然值:」用似然法估计二项式分布的参数,即我们需要计算不同p值时对应的似然值。

如下方程的含义为: 在随机7个人中4个人喜欢香橙口味的固定情况下,计算 p=0.5时的似然值为0.273;

05b4ec210bcdb03f0a7e175fa7db2389.png

在随机7个人中4个人喜欢香橙口味的固定情况下,计算 p=0.25时的似然值为0.058;

8673ab8a47da1d695e58fa029b695488.png

在随机7个人中4个人喜欢香橙口味的固定情况下,计算 p=0.57时的似然值为0.294。

6cf1be03a0f973c1db9b30752f4c5c76.png

p值的取值范围是[0,1],将以上二项式分布中的p在[0,1]范围内的似然值绘制成曲线,当曲线达到峰值(斜率为0)时对应的似然值最大。

9274cc615d58e370e477c174681b680c.png

「因为在似然值曲线的峰值时,该p值对应的似然值最大,故可将其转化成数学问题,求解二项式分布的导数为0时,p的取值。」

为方便求导,将似然值求解公式两边同时取对数处理并简化方程:

9ce8958961df002acdeb38b7aacc9140.png

函数求导并简化方程:

52cabd3e784c270e1ce0b8371720325c.png

令导数=0,求解p:

8a893acfc632b99311cd24ffbc9f6ec5.png

228dd362f22387d38ae433471a1495be.png

当p=4/7=0.57时,取得最大似然值。故得出结论,当人们喜欢香橙口味饮料的概率为0.57时,发生4个人喜欢香橙口味,3个人喜欢葡萄口味的概率最大。

任意情况下,最大似然值估计二项式分布参数

问题:已知任意n个人中,任意x人喜欢香橙口味时,探究该二项式分布中最有可能的p值。

求解方法同前,依次对函数进行对数处理、求导、求解p。最终,得出当p=x/n时,n人中x人更喜欢香橙口味的似然值最大。

为方便求导,将似然值求解公式两边同时取对数处理并简化方程:

459c6e630cbe064a43bdc92342ce77a4.png

658aea87af7a61923f2afa33574a2f89.png

因不论n与x的取值,当斜率=0(导数=0)时,该处对应的似然值最大。

46454837e662c93bff8bf8cad0e73e7d.png

令导数=0,求解p:

85d18a617949549083928003fb455669.png

得出结论:得出当p=x/n时,n人中x人更喜欢香橙口味的似然值最大,即 n人中x人更喜欢香橙口味发生的概率最大。

小结

通过前面几期的深入学习,使得我们能够更加清楚的了解最大似然值估计法的基本原理,让最大似然法不再陌生。继续加油~~~

责任编辑:

  • 0
    点赞
  • 5
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值