linux系统下回收站,在linux系统中,自己制作一个回收站!

hello,大家好,大家看了上次的我写的rm删除文件,做实验了么?如果对liunx感兴趣的,建议这个技能一定要掌握,我写完以后,在百度上搜了一下相关的资料,看到一个更方便的办法,这个办法就是自己制作一个回收站,每次删除文件后,他都会保存到回收站中去,如果反悔了,可以恢复回来,在这里我特别感谢在百度上发帖的哥们,是他想出来的办法。非常感谢他。

好了进入正题:

系统环境:CentOS release 4.4 (Final)

操作步骤我说的很详细,不要嫌弃啰嗦,因为我还照顾着对liunx不熟悉的人。

1 首先 我在/ 下创建了一个文本文件,起名:xcy 然后在xcy文件中添加内容为 hello xcy 看好了哈,我查看了一下xcy文件里面有内容,内容是hello xcy ,然后我就应该做最关键的地方了,修改/root/.bashrc 里面创建我们的回收站。

5b5a1b106feb6f3c6297dc6a526ae7bf.png

2 这个部分是主要内容:原理我给大家介绍一下下:

1 上面用了个if判断 -f 参数意思是 判断/etc/bashrc 是不是一个文件 如果是 ;then ./etc/bashrc

2 下面是创建了一个文件夹 在~/.trash 这个位置= /root/.trash

3 修改别名 rm = trash 这里的 trash 是引用的下面的自定义函数

4 提定义函数 trash(){ mv $@ ~/.trash } 这个自定义函数的意思就是 trash的内容就是 mv 文件 到 ~/.trash

然后把trash 修改别名为rm ,也就是说 当你执行rm 命令的时候相当于执行trash 而 trash内容为 mv 文件 到 /root/.bashrc 中,是不是很绕? 要是没有听明白,多看两遍,正所谓缕一缕,哈哈

点击(此处)折叠或打开

if [ -f /etc/bashrc ]; then

. /etc/bashrc

fi

mkdir -p ~/.trash

alias rm=trash

trash()

{

mv $@ ~/.trash/

}

241fcee6a0ab4ec9784f65644e0946a4.png

3 我在/ 下查看了一下 有xcy 文件,然后我用rm 删除了xcy 我在强调一下: 必须用 rm 删除 因为我们定义的是rm 别名了,rm -rf 能定义 我试验了好几次都不行,所以说 习惯用 rm -rf 命令的朋友 要该一该了, 当我用 rm 删除文件以后 我进/root/.trash 目录中 查看 我的xcy 文件就在里面 内容也是删除文件的, 说明 试验成功了,回收站创建OK。很好玩吧。。

ecee89abe5c55517ed52584e7e2c1a3c.png

试验总结: 这个办法说实在很实用,但是有缺陷,缺点就是必须习惯用 rm 删除文件 我试验了多次 无法定义rm -rf 命令,大家可以尝试一下如果有办法,给我回帖啊一定要, 还有一个问题就是一个回收站相当于每次删除,把文件都是mv 过来的,实际没有删除,这个一来回收站容量会一直增长,但是这个问题可以在计划任务中添加一个 每个星期清空一次。

我这个人喜欢把知识分享给大家,希望能帮助到你们。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值