php 项目反应理论,科学网—好文 | 纽约石溪大学:机器学习中基于项目反应理论的集成学习 - 陈培颖的博文...

纽约石溪大学的研究者提出了一种新的加权投票分类集成算法,该算法结合项目反应理论(IRT),用于评估和加权分类器在处理复杂案例上的能力。这种方法考虑了数据点的难度和分类器的潜在能力,从而在UCI分类数据上提高了分类效果。通过评价分类器的性能和训练数据的难度,该集成学习策略能更好地解释基础分类器的优劣。
摘要由CSDN通过智能技术生成

机器学习中,研究者们对分类集成的关注与日俱增,尤其关注分类精度的提升。IJAC近期发表了来自纽约石溪大学研究者的最新成果,该研究基于项目反应理论,提出一种加权投票方法---基于IRT理论的集成学习算法,该方法可正确处理分类难题。研究还构建三个模型用以评估能力参数,并介绍了模型背后的假设。

全文下载:

Item Response Theory Based Ensemble inMachine Learning

机器学习中基于项目反应理论的集成学习

Ziheng Chen, Hongshik Ahn

f00d39b0382c2f569116e3156c5c0c26.png

机器学习领域,研究者们对分类问题的集成学习(Classification ensembles)的关注与日俱增。集成学习(ensemble learning)区别于其他类型学习最重要的特征是它综合了一组分类器的预测结果,而不仅仅依赖于单个分类器。当前,在多种情况下已证实:在集成学习算法中,聚合性能指标(aggregated performance metrics),如Bagging、Boosting和增量学习(incremental learning)的表现均优于其他同类算法。

集成学习算法中最核心的内容,便是组合判定规则(combination rule)。根据组合的方法,可分类为:简单多数投票(simple majority voting)和加权多数投票(weighted majority voting)。简单多数投票是一种综合了分类器决策的决策规则。由于其简单、适用性强,已经在集成学习中得到广泛应用。加权多数投票则是将每个分类器的决策乘以一个权重,而后把加权决策组合起来完成最终决策。这两种方法基于分类器的性能来训练数据,因此,一旦单个分类器完成训练,就不再需要调节任何参数。

借鉴项目反应理论(Item Response Theory, IRT)中的思想, 本文提出了一种新的加权投票分类集成(weighted voting classification ensemble)算法。IRT广泛应用于心理学或教育学中评价试题难度或者学生能力,我们将之迁移到集成学习策略中来评价不同基础分类器的效果。我们把每个数据点(data point)当作一个问题,把不同的分类器当作在课堂上完成考试的学生。众所周知,一个学生解决问题时的表现取决于两个主要因素:问题的难度及学生的能力。训练数据当中,有些特征显著且易于分类,而有些接近类别边界(class boundaries)的数据却很难分类。因此,与课堂考试类似,我们将分类器的性能定义为可正确分类复杂案例的能力,而不是正确完成分类的案例数量。例如,假设一个分类器正确完成了简单案例的分类,却不能处理复杂案例。另一个分类器正确分类了一些复杂案例,而错误地分类了简单案例。那么,第二个分类器所得的权重就比第一个分类器高。

本文提出一种同时评价分类器能力和分类难度的方法。本研究所采用的项目反应理论(item response theory, IRT)框架已广泛应用于心理和教育研究中,用以评估分类器的潜在能力。在UCI分类数据的实验中,这种集成学习方法有效的提升了分类效果。值得一提的是,该方法有效解释了基础分类器的强弱与训练集中数据点难易的关系。

a98b733a66b1698013fce1a01e581f18.png

f263576e2581372790d9979c677f5e08.png

2440350fa568ebc6d29807db5df94b36.png

转载本文请联系原作者获取授权,同时请注明本文来自陈培颖科学网博客。

链接地址:http://blog.sciencenet.cn/blog-749317-1258227.html

上一篇:科研小工具 | 基于LaTex轻松制作PPT

下一篇:最新 | 2020研究前沿及热点解读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值