计算机影响交流,计算机媒介影响人际交流方式理论综述.pdf

本文回顾了过去40年关于计算机媒介如何影响人际交流的研究,分为技术决定论和非技术决定论两大理论流派。技术决定论强调计算机直接改变交流方式,而非技术决定论则关注人的选择作用。文章指出,目前理论存在矛盾,未来研究应追求统一规范和提高生态效度。关键词包括技术决定论、非技术决定论、社会在场理论、生态效度、社会线索减少理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

·64·

文章编号:1006-8309(2009)03-0064-04

计算机媒介影响人际交流方式的理论综述

谢天,郑全全

(浙江大学心理与行为科学系,杭州310028)

摘要:文章对计算机媒介特点的相关理论进行了归纳,梳理出近40年该领域的发展脉络,并进行了较详

尽论述。文章指出了现有理论之间的矛盾,并认为形成统一的研究规范与提高研究的生态效度是该领域未来

的研究发展方向。

关键词:技术决定论;非技术决定论;生态效度

中图分类号:B849:C93 文献标识码:A

1 引言 2.2过滤线索取向

计算机作为一种新的媒介会对人们的交流方式 2.2.1社会在场理论

产生怎样的影响?经过近40年的研究,主要呈现出 社会在场理论由Short等人于1976年提出。

两大类理论。第一类可称为“技术决定论”,认为计 该理论认为不同交流媒介会传达不同水平的社

算机直接影响人的交流方式;第二类可称为“非技术 会在场(social

presence)——“其他交流者与我一

决定论”,认为人对计算机的使用是—个主动选择的 起参与交流(也即在场)的一种感觉”。而社会在

过程,或人的选择与计算机媒介具有交瓦作用。其 场取决于交流者是否能够得到交流对象的视觉、

中技术决定论一直是研究者关注的莺点;非技术决 听觉甚至是触觉的信息。因此社会在场既是“对

定论较少有后续研究和发展。下面试对近40年来 方是否在场的感觉”,又是“媒介是否丰富的性

该领域出现的主要理论进行梳理。 质”∞。。显然面对面交流方式的社会在场水平最

2技术决定论 高,而以计算机为媒介交流的社会在场水乎最低。

2.1 早期理论——去个体化理论 因而以计算机为媒介的交流“较少友好,较少情感

去个体化理论的历史渊源可以追溯到法国 性,或者说是更少的人l生化,更多的商业气息。Mp’

社会心理学家勒庞。在现代实验社会心理学中, 2.2.2社会线索减少理论

Festinger等人又重构了“去个体化”这一概念,即社会线索减少理论认为,以计算机为媒介的

当一个人在群体中没有个体化的时候,“该群体 交流中,有限的网络带宽导致了交流过程中社会

成员很有可能会减少内部约束HJ'’。Zimbardo进线索(包括环境线索与个人线索)的减少。而社

一步指出,去个体化是一种普遍存在的状态,匿 会线索的减少又进一步减少社会规范与限制对

名、感觉超负荷等情景都可以导致去个体化,并 个人的影响,并由此产生了反规范与摆脱控制的

使人表现出抑制、敌对的行为旧j。计算机只不过 行为”J。根据社会线索减少理论,较少的社会与

是引起个体去个体化的一种环境而已。 情境线索导致:(1)注意从信息接受者转向任务;

我们认为去个体化理论是计算机媒介影响 (2)由于缺少了地位与领导身份线索,通常的等

人际交流方式的先驱。然而去个体化状态本身 级规范减少了;(3)去个体化是由匿名、缺少自我

既是计算机媒介造成的结果,同时又是导致结果 关注和他人聚焦以及较低的自我控制引起的一。。

的原因。因此将其称作“去个体化假说”可能会 过滤线索取向的两个理论较之去个体化理

更合适。 论在理论论述方面更严谨,也进行了大量的实证

基金项目:浙江省自然科学基金(M703135)

子信箱)thanksky520@126.tom。

万方数据

内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部