基于matlab的fft频谱分析及应用实验报告 实验三用FFT对信号进行频谱分析 一实验目的 1能够熟练掌握快速离散傅立叶变换的原理及应用FFT进行频谱分析的基本方法;2了解用FFT进行频谱分析可能出现的分析误差及其原因; 二实验原理 1.用DFT对非周期序列进行谱分析 单位圆上的Z变换就是序列的傅里叶变换,即 X(ej?)?X(z)z?ej? X(ej?)是?的连续周期函数。对序列x(n)进行N点DFT得到X(k),则X(k)是在区间?0,2??上对X(ej?)的N点等间隔采样,频谱分辨率就是采样间隔 变换可利用DFT来计算。2?。因此序列的傅里叶N 用FFT对序列进行谱分析的误差主要来自于用FFT作频谱分析时,得到的是离散谱,而非周期序列的频谱是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。 2.用DFT对周期序列进行谱分析 已知周期为N的离散序列x(n),它的离散傅里叶级数DFS分别由式和给出: ?jkn1N?1 DFS:ak?x(n)eN,n=0,1,2,…,N-1?Nn?0 N?1 k?02?knN2?IDFS:x(n)??aek N?1 n?0j,n=0,1,2,…,N-1对于长度为N的有限长序列x(n)的DFT对表达式分别由式和给出:DFT:X(k)??x(n)e?j2?knN,n=0,1,2,…,N-1 jkn1N?1 IDFT:x(n)?X(k)eN,n=0,1,2,…,N-1?Nk?02? FFT为离散傅里叶变换DFT的快速算法,对于周期为N的离散序列x(n)的频谱分析便可由式和给出: DTFS:ak?1*fft(x(n))N IDTFS:x(n)?N*ifft(ak)周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。 3.用DFT对模拟周期信号进行谱分析 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。对于模拟周期信号,也应该选取整数倍周期的长度,经采样后形成周期序列,按照周期序列的谱分析进行。如果不知道信号的周期,可以尽量选择信号的观察时间长一些。 三实验内容 1.对以下序列进行谱分析: x1(n)?R4(n) ?n?1?x2(n)??8?n ?0? ?4?n?x3(n)??n?3 ?0?0?n?34?n?70thers0?n?34?n?70thers 选择FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线,并进行对比、分析和讨论。 2.对以下周期序列进行谱分析: x4(n)?cos(n)4 x5(n)?cos(n)?cos(n)48 选择FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线,并进行对比、分析和讨论。 3.对模拟周期信号进行谱分析:??? x6(t)?cos(8?t)?cos(16?t)?cos(20?t) 选择采样频率Fs?64Hz,对变换区间N分别取16、32、64三种情况进行谱分析。分别打印其幅频特性曲线,并进行对比、分析和讨论。 四思考题 1.对于周期序列,如果周期不知道,如何用FFT进行谱分析? 2.如何选择FFT的变换区间? 3.当N=8时,x2(n)和x3(n)的幅频特性会相同吗?为什么?N=16呢? 五实验报告及要求 1.完成各个实验任务和要求,附上程序清单和有关曲线。 2.简要回答思考题。 程序代码: %用FFT对信号作频谱分析 clearall; closeall; %实验 x1n=[ones(1,4)];%产生序列向量R4(n) M=8;xa=1:(M/2);xb=(M/2):-1:1; x2n=[xa,xb];%产生长度为8的三角波序列x2(n)、x3(n) x3n=[xb,xa]; X1k8=fft(x1n,8);%计算(转载于:写论文网:基于matlab的fft频谱分析及应用实验报告)x1n的8点DFT X1k16=fft(x1n,16);%计算x1n的16点DFT X2k8=fft(x2n,8);%计算x2n的8点DFT X2k16=fft(x2n,16);%计算x2n的16点DFT X3k8=fft(x3n,8);%计算x3n的8点DFT X3k16=fft(x3n,16);%计算x3n的16点DFT %幅频特性曲线 N=8;wk=2/N*(0:N-1); subplot(3,2,1);stem(wk,abs(X1k8),'.');%绘制8点DFT的幅频特性图title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); subplot(3,2,3);stem(wk,abs(X2k8),'.'); title('(2a)8点DFT[x_1(n)]');xlabel('ω/π');yl
matlab fft谱分析实验报告,基于matlab的fft频谱分析及应用实验报告.docx
最新推荐文章于 2021-04-07 10:22:02 发布