前言
同微积分理论一样,矩阵分析理论的建立,也是以极限理论为基础的,其内容丰富,是研究数值方法和其他数学分支的重要工具。大体内容和相关结论公式都与数列级数相关,甚至有些是直接从数列级数类比得到。如果你对于收敛等概念比较模糊,希望可以花费一点时间去了解数列级数收敛定理,以及基本初等函数的数列级数。
一、矩阵序列的极限
按照正整数k的顺序,将
中矩阵排列成一列,
称这列有序的矩阵为矩阵序列,称
为矩阵序列的一般项。
本文介绍了矩阵分析理论中的矩阵序列极限和矩阵级数概念。矩阵序列的收敛定义通过范数得以扩展,其中谱范数提供了一种简便的判定方法。此外,讨论了矩阵级数的收敛性质,包括与数列级数的类比和绝对收敛的重要性。这些内容为后续的矩阵幂级数和矩阵微积分奠定了基础。
同微积分理论一样,矩阵分析理论的建立,也是以极限理论为基础的,其内容丰富,是研究数值方法和其他数学分支的重要工具。大体内容和相关结论公式都与数列级数相关,甚至有些是直接从数列级数类比得到。如果你对于收敛等概念比较模糊,希望可以花费一点时间去了解数列级数收敛定理,以及基本初等函数的数列级数。
按照正整数k的顺序,将
中矩阵排列成一列,
称这列有序的矩阵为矩阵序列,称
为矩阵序列的一般项。
2247

被折叠的 条评论
为什么被折叠?