矩阵范数计算例题_矩阵与数值计算(5)——矩阵序列与矩阵级数

本文介绍了矩阵分析理论中的矩阵序列极限和矩阵级数概念。矩阵序列的收敛定义通过范数得以扩展,其中谱范数提供了一种简便的判定方法。此外,讨论了矩阵级数的收敛性质,包括与数列级数的类比和绝对收敛的重要性。这些内容为后续的矩阵幂级数和矩阵微积分奠定了基础。
摘要由CSDN通过智能技术生成

cecabe73c92266a8e07a42f6d7329411.png

前言

同微积分理论一样,矩阵分析理论的建立,也是以极限理论为基础的,其内容丰富,是研究数值方法和其他数学分支的重要工具。大体内容和相关结论公式都与数列级数相关,甚至有些是直接从数列级数类比得到。如果你对于收敛等概念比较模糊,希望可以花费一点时间去了解数列级数收敛定理,以及基本初等函数的数列级数。

一、矩阵序列的极限

按照正整数k的顺序,将

equation?tex=C%5E%7Bm%5Ctimes+n%7D 中矩阵排列成一列,
equation?tex=A_1%2CA_2%2C...%2CA_k%2C...%2C 称这列有序的矩阵为矩阵序列,称
equation?tex=A_k 为矩阵序列的一般项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值