最早的电子计算机艾尔妮,这些看似没用的NPC 却是我们最早的回忆

本文回顾了阿拉德大陆中一些早期剧情NPC,如巴尔雷纳、奥尔卡、敏泰等,尽管他们在升级后显得无足轻重,但作为玩家早期记忆的载体,它们承载了玩家的游戏历程。这些NPC包括任务接收者、冷酷接待者、地图引导者等,尽管功能单一,但回忆价值极高。

疯牛鲁埃尔、巴尔卡纳、斯卡迪女王等等,不知道各位勇士们对于这些NPC还熟悉不?没错,他们都是我们在升级路上的剧情NPC,或许只是因为一个剧情人物只出现过一次,看起来没啥用,但是确实我们刚入坑阿拉德这块大陆时最早的回忆。

斯顿雪域——巴尔雷纳

aaf3bf1f480298027f596ef918502853.gif

这个人物除了交任务的时候好像没有任何的作用。在之前未转移版本的时候或者是转移过之后消失的一个NPC从始至终也就是一个任务接收完成人。但是这位班图族的女武士却因为简单的几句话给当时的我留下了很深的印象。

斯顿雪域——奥尔卡、布万加

aaf3bf1f480298027f596ef918502853.gif

奥尔卡一直是一个很冷酷的存在知道他的主要原因是每次进入雪域他都会来句冷漠的接待。布万加应该很多玩家都熟悉,毕竟那时候是雪域的一个难度比较高的boss。虽然只存在剧情里,但是他那冷漠的样子我却到现在还记得。

斯顿雪域——敏泰

aaf3bf1f480298027f596ef918502853.gif

敏泰和奥尔卡一样,那呆萌的配音也可以让玩家记住它的名字。蛮乖的。

艾尔文防线——土罐

aaf3bf1f480298027f596ef918502853.gif

之前版本的时候各个罐子都有出售等级不同的袖珍罐。各类的袖珍罐也可以开出个各种好的装备。也是拼运气的一个NPC。可是现在只剩下他一个人,孤孤单单的。

艾尔文防线——帝国警卫员

aaf3bf1f480298027f596ef918502853.gif

好像任务可以经过他一次,之后对话和送礼物都不可以。这应该是一个警卫必须要做的“冷酷”吧。并且经过的时候一句话也不会说出来。

后街——夏洛克

aaf3bf1f480298027f596ef918502853.gif

在之前还出售过一些东西。可能起源之后他的东西也丢失了吧,是个小哥布林的形象。

后街——麦瑟·莫纳亨

aaf3bf1f480298027f596ef918502853.gif

也算是守门吧。挺漂亮的一个异国小姐姐。依旧冷酷无情。可能是这类NPC一贯的作风吧。但是她确是黑色噩梦任务的重要NPC。还记得小姐姐黑化后的模样。

赫顿玛尔废墟——帕丽丝

aaf3bf1f480298027f596ef918502853.gif

下水道公主,话说老版和新版模样真的差的好多。会带着打几次副本地图。其余倒是也没有一点作用。我还是更喜欢起源前的大胸小姐姐一点。

银色村庄——炼金术师摩根

aaf3bf1f480298027f596ef918502853.gif

之前的版本还可以对玩家进行出售一些实用的小药品。起源版本一开,一些道具的掉落没有之后,他也没有了应该有的作用。存在感也直线的下降。

天帷巨兽——范哲利斯、奥菲利亚·北伊兰斯

aaf3bf1f480298027f596ef918502853.gif

两个存在感极低的NPC近乎于没有任何的作用,之前版本和现在的并没有什么太大的变革一直是在这样的地方,GBL教的两名老员工。

市政厅——斯卡迪女王、骑士洛巴赫

aaf3bf1f480298027f596ef918502853.gif

这两位NPC在赫顿玛尔的市政厅,好像也就是只有一个任务进来一次,其余时间谁会闲着没事来这里遛弯?遗忘是早晚的事。

西海岸——诺顿

aaf3bf1f480298027f596ef918502853.gif

最好的炼金术师诺顿!号称阿拉德的大部分分解修理机都是他制作的,在很久以前版本的时候只有他这里有分解。现在制作一批阿拉德分解修理机分布在世界各个角落,所以他也退休了。

西海岸港口——雅妮丝、奥菲利亚·贝伊兰斯

aaf3bf1f480298027f596ef918502853.gif

这两个NPC也是走任务用的,同样没有太大的实际作用。之后满级也没有什么新鲜感了。

公国营地——加尔、布莱斯、帕丽丝

aaf3bf1f480298027f596ef918502853.gif

这三个人在一起说是一个NPC也没有什么不妥,点击也只能点击帕丽丝,也就她有几句话。剩下两个应该是跟随着吧。

暗夜精灵营地——疯牛鲁埃尔

aaf3bf1f480298027f596ef918502853.gif

一个挺凶猛的一个“大怪物”?总的来讲形象还是很赞的,打铁球、结实的肌肉。。。。

暗黑城——不海

aaf3bf1f480298027f596ef918502853.gif

这个堂堂暗夜精灵族元老级成员都不会带你刷图,真的可惜这样一位大神了。

王宫——梅亚女王、长老夏普伦

aaf3bf1f480298027f596ef918502853.gif

这两个NPC同市政厅两个NPC类似并且位置更加偏僻,估计也只有任务的时候会走一走,毕竟人家是女王不是你们相见就能见的。

总结:这些大概是阿拉德大陆上一些之后没有什么用的NPC,剧情的走向、等级的提升都离不开这些NPC的帮助,一点点的阿拉德大陆的冒险也跟随他们一点点前进,或许满级之后他们真的都没有任何的作用了,可是回想起升级的那段时光有这些那些人给我们任务,还是挺开心的。

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值