Python中logging配置分享
今天给大家分享的是我职业生涯至今一直再用的一份Python logging配置。
无论是Python开发的后端程序还是基于Django的Web项目都可以使用这个logging配置。
废话不多说直接上代码:
import os
import logging.config
# 定义三种日志输出格式 开始
standard_format = '[%(asctime) -s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]'
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
# 定义日志输出格式 结束
logfile_dir = os.path.dirname(os.path.abspath(__file__)) # log文件的目录
logfile_name = 'all2.log' # log文件名
# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):
os.mkdir(logfile_dir)
# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)
# log配置字典
LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format,
'datefmt': '%Y-%m-%d %H:%M:%S',
},
'simple': {
'format': simple_format
},
},
'filters': {},
'handlers': {
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
'default': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件。自动切日志
'filename': logfile_path, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小5M
'backupCount': 5, # 日志文件备份个数
'formatter': 'standard', # 使用的日志文件格式
'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了
},
},
'loggers': {
'': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
},
}
logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的配置
logger = logging.getLogger(__name__) # 生成一个log实例
logger.info('It works!') # 记录该日志配置文件的运行状态
在后端程序使用
只需要将上述代码保存在 init_logging.py文件中,并且在你程序的入口处引用该文件即可。
在你其他的py文件中,只要在文件开头如下:
import logging
logger = logging.getLogger("__name__") # 生成一个以当前模块名为名字的logger实例
然后在需要写日志的地方:
logger.debug("...") # 记录debug日志
logger.info("...") # 记录info日志
logger.warning("...") # 记录warning日志
logger.error("...") # 记录error日志
在Django项目中使用
只需要将上述logging配置,整理成一个字典,放到`your/project/settings.py中即可:
# settings.py
# 在settings.py文件中添加如下LOGGING配置项
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]'
'[%(levelname)s][%(message)s]'
},
'simple': {
'format': '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
},
'collect': {
'format': '%(message)s'
}
},
'filters': {
'require_debug_true': {
'()': 'django.utils.log.RequireDebugTrue',
},
},
'handlers': {
'console': {
'level': 'DEBUG',
'filters': ['require_debug_true'],
'class': 'logging.StreamHandler',
'formatter': 'simple'
},
'default': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切
'filename': os.path.join(BASE_LOG_DIR, "xxx_info.log"), # 日志文件
'maxBytes': 1024 * 1024 * 50, # 日志大小50M
'backupCount': 3,
'formatter': 'standard',
'encoding': 'utf-8',
},
'error': {
'level': 'ERROR',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切
'filename': os.path.join(BASE_LOG_DIR, "xxx_err.log"), # 日志文件
'maxBytes': 1024 * 1024 * 50, # 日志大小50M
'backupCount': 5,
'formatter': 'standard',
'encoding': 'utf-8',
},
'collect': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切
'filename': os.path.join(BASE_LOG_DIR, "xxx_collect.log"),
'maxBytes': 1024 * 1024 * 50, # 日志大小50M
'backupCount': 5,
'formatter': 'collect',
'encoding': "utf-8"
}
},
'loggers': {
# 默认的logger应用如下配置
'': {
'handlers': ['default', 'console', 'error'], # 上线之后可以把'console'移除
'level': 'DEBUG',
'propagate': True,
},
# 名为'collect'的logger还单独处理
'collect': {
'handlers': ['console', 'collect'], # 上线之后可以把'console'移除
'level': 'INFO',
}
},
}
按如上配置好之后,就可以在Django项目的py文件中和之前一样生成logger实例,并使用了。
例如:
# 在views.py中
import logging
logger = logging.getLogger("__name__") # 生成一个以当前模块名为名字的logger实例
c_logger = logging.getLogger("collect") # 生成一个名为'collect'的logger实例,用于收集一些需要特殊记录的日志
最后附上我翻译的Python官网的日志流图