复平面上gamma函数_逐渐硬核的函数展开——洛朗级数、Mittag-Leffler和Weierstrass定理...

从幂级数到洛朗级数

在传统微积分的范畴内,幂级数

是一个非常有效的函数近似工具。它不仅能够帮助我们为函数找出合适的多项式近似,还能够有效地解决极限里一类未定式问题:

然而幂级数也有它的局限性,它只能在全纯函数的解析点处展开,而且很多时候都无法在函数的定义域内完全收敛。比如

在x=0处就无法产生幂级数展开。但事实上,如果我们对指数函数进行换元,可以得到一个别样的展开式。
对于
,令
,可得:

读者不难验证这个展开式在
定义域内都收敛

此类展开式推广开就是洛朗级数(Laurent series)

。有了它,我们就可以得到亚纯函数在极点附近的近似。在分析时,洛朗级数会被分解为主部和正则部:

仔细观察,我们可以发现主部和正则部本质上是两个幂级数,所以它们会有对应的收敛半径。设主部的收敛半径为r,正则部为R,则洛朗级数的收敛域在复平面上为圆环:

这也意味着函数只要在某一圆环内解析,就可以产生洛朗展开。现在我们设围道

如下:

b35efd784bfa72288f22d3c0ed89bff6.png

根据条件,我们知道f(z)在围道内部和围道上都解析。所以根据柯西积分公式有:

由于AB与DE方向刚好相反,两者刚好可以抵消,所以上面的式子变成了:

上,有
,所以
。于是,橙色部分可以通过几何级数被变换为正则部:

上,有
,所以蓝色部分可以变换为主部:

将这两个结果代入(1)式,得:

根据柯西积分公式,易证对于任意自然数k,

且对于任意正整数n,
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值