fp16 的累加误差有多大

本文地址:https://wanger-sjtu.github.io/fp16-err/

最近在项目中需要实现fp16的数据类型做FFN的计算,算子实现的同学反馈误差与x86上得到的golden数据有比较大误差。开始以为是x86侧做数值模拟仿真的问题。后面也实现了对比了一下,发现误差累计确实挺大。

实测结果对比

int main()
{
    // Seed with a real random value, if available
    std::random_device rd;
    std::mt19937 gen(rd());
    std::uniform_real_distribution<> dist(0, 0.01);
    
    float16_t lhs[4096] = {0};
    float16_t rhs[4096] = {0};
    for (int i = 0; i < 4096; i++) {
        lhs[i] =  dist(gen);
        rhs[i] =  dist(gen);
    }
    float16_t res_fp16 = 0;
    float res_fp32 = 0;

    for (int i = 0; i < 4096; i++) {
        res_fp16 += lhs[i] * rhs[i];
        res_fp32 += lhs[i] * rhs[i];
    }
    std::cout << "fp16 " << res_fp16 << std::endl;
    std::cout << "fp32 " << res_fp32 << std::endl;
    wirte2file("/data/local/tmp/lhs", reinterpret_cast<char*>(lhs), 8192);
    wirte2file("/data/local/tmp/rhs", reinterpret_cast<char*>(rhs), 8192);
}

结果输出:

fp16 0.0942383
fp32 0.103176

相对误差到8.1%了。难怪反馈有问题。

dim绝对误差
1001.63913e-07
1000-0.00033829
2000-0.000909835
4000-0.00924221

golden 数据误差从何而来

实际生成golden数据的时候,也考虑了数值类型差异的影响,那为什么还存在误差呢?

对比了一下dot的视线与直接累加结果

import numpy as np
import torch

lhs = np.fromfile("lhs",dtype=np.float16)
rhs = np.fromfile("rhs",dtype=np.float16)

lhs = torch.from_numpy(lhs)
rhs = torch.from_numpy(rhs)

res = torch.Tensor([1]).half()
res[0] = 0
for i in range(4096):
    res += lhs[i:i+1] * rhs[i:i+1]

print(res)
print(torch.dot(lhs, rhs))
tensor([0.0942], dtype=torch.float16)
tensor(0.1041, dtype=torch.float16)

结果对得上了。torch 的 dot实现的时候很可能用了更高数值类型做累加。

怎么解决

如果不想引入更高精度的计算,可以考虑新加一个变量消减一下误差。

https://oi-wiki.org/misc/kahan-summation/

在计算 Snew=Sold+a S n e w = S o l d + a (a 为浮点序列的一个数值)时,定义实际计算加入 S S 的值为 aeff=SnewSold, 如果 $a_{eff} a a_{eff} a$ 小,则证明有向下舍入误差。则舍入误差定义为 Eroundoff=aeffa。那么用来纠正这部分舍入误差的值就为 aaeff a − a e f f , 即 Eroundoff E r o u n d o f f 的负值。定义 c 是对丢失的低位进行运算补偿的变量,就可以得到 cnew=cold+(aaeff) c n e w = c o l d + ( a − a e f f )

过程
Kahan 求和算法主要通过一个单独变量用来累积误差。如下方参考代码所示,sum 为最终返回的累加结果。c 是对丢失的低位进行运算补偿的变量(其被舍去的部分),也是 Kahan 求和算法中的必要变量。

因为 sum 大,y 小,所以 y 的低位数丢失。(t - sum) 抵消了 y 的高阶部分,减去 y 则会恢复负值(y 的低价部分)。因此代数值中 c 始终为零。在下一轮迭代中,丢失的低位部分会被更新添加到 y。

参考代码:

float kahanSum(vector<float> nums) {
  float sum = 0.0f;
  float c = 0.0f;
  for (auto num : nums) {
    float y = num - c;
    float t = sum + y;
    c = (t - sum) - y;
    sum = t;
  }
  return sum;
}

__EOF__

  • 本文作者: 王二
  • 本文链接: https://www.cnblogs.com/wanger-sjtu/p/18425293
  • 关于博主: 评论和私信会在第一时间回复。或者直接私信我。
  • 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
  • 声援博主: 如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。
原创作者: wanger-sjtu 转载于: https://www.cnblogs.com/wanger-sjtu/p/18425293
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值