php冒泡排序 不重复,简单的理解PHP冒泡排序

本文详细解析了PHP中的冒泡排序算法,通过逐步演示冒泡排序的过程,帮助初学者理解冒泡排序的基本原理及实现步骤。

PHP中涉及到多种排序,而冒泡排序应该是我用的最闹心的一种排序,弄了老半天还是没太懂,这篇简单讲述PHP冒泡排序的很适合像我一样不太懂冒泡排序的东西看哦!

1.冒泡算法

看了几篇关于冒泡的文章,但是总是对于每次循环的边界值思路讲的比较笼统。

不是很容易被新手记住,我自己平时也是硬记下来的。

但是对于算法,硬记,时间长了还是容易忘记,所以自己写了一次,把每次思路尽量写下来,便于理解,理解了容易加深映像,不容易忘记了。

冒泡算法,核心就是

1.循环比对 每次比对相邻2个数组的大小,然后把最大的数组放到后面,这样所有比对循环一次,就会把数组中最大的数放到数组最后

2. 然后重复循环(重复上面的比对循环):此时循环的时候 最后一个值是不需要参加循环了,因为已经确定是最大的那个了。也就是说,重复循环,比对数组越来越少。最终只剩一个数组元素了。循环结束

代码层看:$arr=array(5,4,3,6,7,1,2,10,8,9);

先从两两比对开始看if($arr[$i]>$arr[$i+1]){//相邻比较 这个应该比较容易理解吧

$tem=$arr[$i];

$arr[$i]=$arr[$i+1];

$arr[$i+1]=$tem;

}

以上代码就是比对2个数组相邻的值大小,大的放后面。可以看出来 $i 最大就是数组索引前一位的,否则 $arr[$i+1]不存在了,无法比较。也就是说 $i

先从内层比对循环开始看

一般for循环 这么写for($i=0;$i

if($arr[$i]>$arr[$i+1]){//相邻比较 这个应该比较容易理解吧

$tem=$arr[$i];

$arr[$i]=$arr[$i+1];

$arr[$i+1]=$tem;

}

}

上面思路说了,每次比对循环都是从开头第一个元素开始 所以$i 起始值为0, 重复循环一次,下次循环就少比对一个元素。这里$xx要越来越小; 那这个$xx怎么确定呢?

$xx第一次循环值是多少 ?上面两两比对得出结论 count($ar)-1

$xx 最后一次值该是多少呢?上面两两比对得出结论 是1。

也就是说 $xx 为 count($arr)-$k $k是累加的 比对循环可改为(重复循环每循环一次)for($i=0;$i

if($arr[$i]>$arr[$i+1]){//相邻比较

$tem=$arr[$i];

$arr[$i]=$arr[$i+1];

$arr[$i+1]=$tem;

}

}

再看这个$k 想想这个$k不就是随着重复循环在累增的吗? 把重复循环代码加上如下

我们再来看下$k是怎么确定边界值的 上面说了, $xx 边界值是 count($arr)-1 到 1 已经定义 那么数学算法 $k边界值也就出来了 为 1到 count($arr)-1

写入到循环里也就是 $k=1;$k

整理下就是for($k=1;$k

for($i=0;$i

if($arr[$i]>$[$i+1]){

$temparr= $arr[$i];

$arr[$i] =$arr[$i+1];

$arr[$i+1] = $temparr;

}

}

}

希望大家可以看的懂,还是多练练比较好,有的时候我们不明白的知识,自己多写两遍写着写着就懂了!

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度与泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合与参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释与模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化与实际工程落地的相关从业者;工作年限建议在1-5年之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)与经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署与可扩展性设计,为后续工程化应用打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值