苹果电脑计算机找不到打印机,macbook air电脑关于添加打印机的问题

这篇博客指导用户在OSX系统中手动安装网络打印机,强调了正确选择打印协议、IP地址和驱动程序的重要性。首先,从官网下载驱动程序,然后在系统偏好设置的‘打印机和扫描仪’中添加IP打印机,选择合适的打印协议如IPP,并输入打印机的IP地址。如果OSX未找到合适驱动,可以尝试使用通用驱动。打印机配置包括双面打印、送纸盒等选项,配置不当可能导致打印乱码问题。
摘要由CSDN通过智能技术生成

一定要看你的打印机所支持和开放了的协议,猜不是推荐的方法. 一般来说网络打印机的web界面都会是默认开启的,从那里你可以了解,详尽的打印机配置和参数情况,等我有时间找一个图传上来。

一般来说对于新打印机的操作是先在OSX上手动安装打印机:

最先要下载安装网络打印机的驱动程序,要去官网,实在找不到,再去其它的驱动下载网站,都找不到也没有关系,见后解释。

到Printers & Scanners System Preference,也就是系统偏好->打印机和扫描仪(中文应该是这样翻译的),

再点击左下角的“+”号,注意一般来说不要使用“附近打印机”的选项,除非你的打印机没有固定IP或者很小的局域网络环境,

然后在添加弹出窗口中选择IP选项:先选择打印协议(IPP或者Socket等),然后再填上IP地址,这样离开IP地址栏之后,OSX应该可以自动帮你选择最恰当的驱动 ,如果它没有发现适当的驱动,那么要注意后面自己选的驱动有可能有问题,但也不一定;后面,如果有打印队列名称就填上,给它一个名称。

如果OSX没有帮你找到合适的驱动,就在后面手动寻找,如果找不到该打印机的驱动,可以尝试使用通用的PostScript或者PCL驱动,这要依据你的打印机到底支持什 么打印语言。总之,驱动程序很重要。你的打印乱码应该是驱动的问题,或者是配置不当。

最后是配置打印机的选项,比如是否带双面打印器,送纸盒,装订器等等,这些如果不确定,可以先不选。

如果手动都装不好,命令行就更容易出错。建议检查打印驱动,网络打印协议和打印语言等关键点。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值