反向题在测试问卷信效度_问卷一定要做信度效度检验吗?如果含有多选题怎样做信度分析,请各位高手帮帮忙。...

展开全部

一般问卷都是需要做信效度检验的,表明你的研究工具可靠、可信。多数问卷是以likert5级形式62616964757a686964616fe4b893e5b19e31333366303236呈现的

多选题的话,是不能做信效度了。或者你将每个多选题的选项拆分,变成多个二分制的小题,是否选(0,1)然后可以重测

效度方面,也就是表面效度和专家效度了

扩展资料

信度的影响因素

影响信度的因素主要有以下几种:

样本的特征

(1)样本团体分数分布的影响:任何相关关系都受到团体中分数分布的影响,当分布范围增大时,其信度估计就较高;当分布范围减小时,相关系数随之下降,信度值则较低。

(2)样本团体异质性的影响:若获得信度的取样团体较为异质的话,往往会高估测验的信度,相反则会低估测验的信度。样本团体平均能力水平的影响:对于不同水平的团体,题目具有不同的难度,每个题目在难度上的微小差异累计起来便会影响信度。

测验的长度

在一个测验中增加同质的题目,可以使信度提高。测验越长,测验的测题取样或内容取样越有代表性;测验越长,被试的猜测因素影响越小。

测验的难度

如果一个测验对某团体而言太容易,会使所得分数都集中在高分端;当题目太困难时,得分就会集中在低分端。两种情况均会使信度样本的分数范围变窄,从而使测验变得不够可靠。

测验的时间间隔

以再测法或复本法求信度,两次测验相隔时间越短,其信度系数越大;间隔时间越久,其他变因介入的可能性越大,受外界的影响越大,信度系数便越低。

提高测量信度的方法

(1)适当增加测验的长度:增加一些与原测项目具有同质性的项目有助于提高测量信度,因为测量信度和测量项目多少是有直接关系的。有两点需要注意:第一,新增项目必须与试卷中原有项目同质;第二,新增项目的数量必须适度。

(2)使测验中所有试题的难度接近正态分布,并控制在中等水平。这样可以使得被测团体得分分布也会接近正态分布,且标准差会较大,信度也会增大。

(3)努力提高测验试题的区分度。一份测验所有试题区分度的高低直接影响测验的信度。努力提高测验中所有试题的区分度,可望获取较高的测验信度。

(4)选取恰当的被试团体,提高测验在各同质性较强的亚团体上的信度。在检验测验信度时,一定要根据测验的使用目的来选择被试。即在编制和使用测验时,要弄清楚常模团体的年龄、性别、文化程度、职业、爱好等因素。在一个特殊异质的团体上获得的信度值并不等于其中某些较同质的亚团体的信度值。当各亚团体的信度值都符合要求时,测验才能具有更广泛的价值。

(5)主试者严格执行施测规程,评分者严格按照标准给分,施测场地按测验手册的要求进行布置,减少无关因素的干扰。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
明白了,你需要一个神经网络用于分子逆合成分析和推导合成路线的代码。这是一个相当复杂的任务,需要综合使用深度学习和化学信息学的知识。 下面是一个简化的神经网络模型示例,用于分子逆合成分析和推导合成路线: ```python import torch import torch.nn as nn import torch.optim as optim # 定义神经网络模型 class MolecularSynthesisModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MolecularSynthesisModel, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义输入特征维度、隐藏层维度和输出维度 input_dim = 100 hidden_dim = 128 output_dim = 1 # 创建神经网络模型 model = MolecularSynthesisModel(input_dim, hidden_dim, output_dim) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 加载训练集和测试集数据 train_data = ... train_labels = ... test_data = ... test_labels = ... # 训练模型 num_epochs = 100 batch_size = 32 for epoch in range(num_epochs): for i in range(0, len(train_data), batch_size): inputs = train_data[i:i+batch_size] labels = train_labels[i:i+batch_size] # 前向传播 outputs = model(inputs) # 计算损失 loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每个epoch打印损失 print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}") # 在测试集上评估模型 with torch.no_grad(): test_outputs = model(test_data) test_loss = criterion(test_outputs, test_labels) print(f"Test Loss: {test_loss.item()}") # 使用模型进行分子逆合成分析和推导合成路线 input_molecule = ... predicted_synthesis_route = model(input_molecule) print(f"Predicted Synthesis Route: {predicted_synthesis_route}") ``` 需要注意的是,上述代码只是一个简化的示例,缺少了一些关键部分,比如数据预处理、数据加载、特征工程等。你需要根据具体的任务和数据来进行相应的修改和补充。 此外,神经网络在化学领域的应用还存在一些挑战,如数据稀缺性、生成多样性等。因此,建议在实际应用中结合化学信息学方法和领域知识,以获得更好的结果。 如果你有具体的需求或需要进一步的帮助,提供更详细的信息,我将尽力协助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值