《《时间序列分析》第一章时间序列分解案例及MATLAB程序[1]》由会员分享,可在线阅读,更多相关《《时间序列分析》第一章时间序列分解案例及MATLAB程序[1](63页珍藏版)》请在人人文库网上搜索。
1、时间序列分解部分作业 要求 用提供或自查资料数据: 至少用两种方法对时间序列进行分解.要求如下: 1. 画出数据图,给出数据周期; 2. 给出趋势项、季节项与随机项的计算公式 3. 画出趋势项、季节项与随机项的数据图 4. 对下一时段(年、季度或月做出预测。 案例 0 贵阳市 2007 年 7 月至 2010 年 12 月小型载客汽车累计数据的分析 数据处理如下:数据周期 T=2 上半年 下半年 年平均 2007 729294 729294 2008 827113 928092 877602.5 2009 1054322 1227726 1141024 2010 1443167 1662969。
2、 1553068 半年平均 1108200.667 1137020.25 方法 1 回归直线趋势 clear; X=729294 827113 928092 1054322 1227726 1443167 1662969; Y=1,1,1,1,1,1,1; 1,2,3,4,5,6,7,; %最小二乘估计计算一元线性回归系数 R_c=inv(Y*Y)*Y*X; a=R_c(1) b=R_c(2) %描原始数据图与趋势项回归直线图 t=1:1:7; T_R=a+b*t; plot(t,X,t,T_R,r) xlabel(),ylabel() title(原始数据图和趋势项回归直线图:红线为回归直线。
3、) a = 5.0570e+005 b = 1.5474e+005 1234567 0.6 0.8 1 1.2 1.4 1.6 1.8 x 10 6 原始数据图和趋势项回归直线图:红线为回归直线 1、趋势项 t T的估计值是回归直线见上图 5.0570e005 1.5474e005ttT =+ 2、季节项( )S k的估计公式为 ( ) 43 ,2 ,2 10 11 ()(),12. 44 j kkj j kkj jj S kxTxTk+ + = = 3、随机项的估计公式为 ,17.tt t t RxTSt= 画季节项和随机项的数据图及预测 clear; X=729294 827113 928。
4、092 1054322 1227726 1443167 1662969; Y=1,1,1,1,1,1,1; 1,2,3,4,5,6,7,; %最小二乘估计计算一元线性回归系数 R_c=inv(Y*Y)*Y*X; a_R=R_c(1) b_R=R_c(2) %趋势项回归估计值 for t=1:1:7; T_R=a_R+b_R*t; end %原始数据-趋势项=季节项+随机项 SR=X-T_R; %季节项 S_R(k)的回归估计 S=0;%季节项求和 for t=1:1:2 sum=0; for k=t:2:7; sum=sum+SR(k); end S_R(t)=sum/4; S=S+S_R(t。
5、); end S;%计算季节项之和是否为 0 S_R %随机项的估计 for k=1:1:2 s=S_R(k); for j=k:2:7 D1=SR(j); R_R(j)=D1-s; end end %下一年(2011 年)每个季度的预测值 for t=8:1:9 T_R_P=a_R+b_R*t+SR(t-7) end T_R_P t=1:1:7; plot(t,SR,t,R_R,r) xlabel(),ylabel() title(季节项和随机项:红线为随机项) a_R = 5.0570e+005 b_R = 1.5474e+005 S_R = 1.0e+005 * -4.5187 -3.6。
6、052 T_R_P = 8.8404e+005 T_R_P = 1.1366e+006 T_R_P = 1.1366e+006 1234567 -10 -8 -6 -4 -2 0 2 4 6 x 10 5 季节项和随机项:红线为随机项 方法二二次曲线趋势 clear; X=729294 827113 928092 1054322 1227726 1443167 1662969; Y=1,1,1,1,1,1,1; 1,2,3,4,5,6,7; 12,22,32,42,52,62,72; %最小二乘估计计算一元二次回归系数 R_c=inv(Y*Y)*Y*X; a=R_c(1) b=R_c(2) c。
7、=R_c(3) %描原始数据图与趋势项二次回归曲线图 t=1:1:7; T_R=a+b*t+c*t.2; plot(t,X,t,T_R,r) xlabel(),ylabel() title(原始数据图和趋势项二次回归曲线图:红线为回归曲线) a = 6.8807e+005 b = 3.3163e+004 c = 1.5197e+004 1234567 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 x 10 6原始数据图和趋势项二次回归曲线图:红线为回归曲线 1、趋势项 t T的估计值是回归直线见上图 2 6.8807e0053.3163e004t+1.51。
8、97e004ttT =+ 2、季节项( )S k的估计公式为 ( ) 43 ,2 ,2 10 11 ()(),12. 44 j kkj j kkj jj S kxTxTk+ + = = 3、随机项的估计公式为 ,17.tt t t RxTSt= 画季节项和随机项的数据图及预测 clear; X=729294 827113 928092 1054322 1227726 1443167 1662969; Y=1,1,1,1,1,1,1; 1,2,3,4,5,6,7; 12,22,32,42,52,62,72; %最小二乘估计计算一元二次回归系数 R_c=inv(Y*Y)*Y*X; a=R_c(1)。
9、 b=R_c(2) c=R_c(3) %趋势项二次回归曲线 for t=1:1:7; T_R=a+b*t+c*t.2; end %原始数据-趋势项=季节项+随机项 SR=X-T_R; %季节项 S_R(k)的回归估计 S=0;%季节项求和 for t=1:1:2 sum=0; for k=t:2:7; sum=sum+SR(k); end S_R(t)=sum/4; S=S+S_R(t); end S %计算季节项之和是否为 0 S_R %随机项的估计 for k=1:1:2 s=S_R(k); for j=k:2:7 D1=SR(j); R_R(j)=D1-s; end end %下一年(2。
10、011 年)每个季度的预测值 for t=8:1:9 T_R_P=a+b*t+c*t.2+SR(t-7) end T_R_P t=1:1:7; plot(t,SR,t,R_R,r) xlabel(),ylabel() title(季节项和随机项:红线为随机项) a = 6.8807e+005 b = 3.3163e+004 c = 1.5197e+004 S = -9.4537e+005 S_R = 1.0e+005 * -5.2786 -4.1751 T_R_P = 9.9042e+005 T_R_P = 1.3798e+006 T_R_P = 1.3798e+006 1234567 -10。
11、 -8 -6 -4 -2 0 2 4 6 x 10 5 季节项和随机项:红线为随机项 案例 1 下面数据是某商品在 20012006 年中每一季度的销售额 方法一分段趋势 年份 一季度 二季度 三季度 四季度 年平均 2001 4078.66 3907.062828.464089.53725.92 2002 4339.61 4148.62916.454084.643872.325 2003 4242.42 3997.582881.014036.233789.31 2004 4360.33 4360.533172.184223.764029.2 2005 4690.48 4694.483342.。
12、354577.634326.235 2006 4965.46 5026.053470.144525.944496.898 季平均 4446.16 4355.7173101.7654256.283 clear all;close all; %原始数据 x_soure=4078.66 3907.06 2828.46 4089.5;4339.61 4148.6 2916.45 4084.64;4242.42 3997.58 2881.01 4036.23;4360.33 4360.53 3172.18 4223.76;4690.48 4694.48 3342.35 4577.63;4965.46 5。
13、026.05 3470.14 4525.94; %趋势项(年平均) T_estimate=3725.92 3725.92 3725.92 3725.92 ;3872.325 3872.325 3872.325 3872.325 ;3789.31 3789.31 3789.31 3789.31 ;4029.2 4029.2 4029.2 4029.2 ;4326.235 4326.235 4326.235 4326.235 ;4496.898 4496.898 4496.898 4496.898; %季节项 s(k)的均值估计 for k=1:1:4 sum=0; for j=1:1:6 sum。
14、=sum+x_soure(j,k)-T_estimate(j,k); end s_estimate(k)=sum/6; end s_estimate x=4078.66 3907.06 2828.46 4089.5 4339.61 4148.6 2916.45 4084.64 4242.42 3997.58 2881.01 4036.23 4360.33 4360.53 3172.18 4223.76 4690.48 4694.48 3342.35 4577.63 4965.46 5026.05 3470.14 4525.94; T=3725.92 3725.92 3725.92 3725.9。
15、2 3872.325 3872.325 3872.325 3872.325 3789.31 3789.31 3789.31 3789.31 4029.2 4029.2 4029.2 4029.2 4326.235 4326.235 4326.235 4326.235 4496.898 4496.898 4496.898 4496.898 ; D=x-T;%季节项的波动 %随机项的估计 for k=1:1:4 s=s_estimate(k); for j=k:4:24 D1=D(j); R(j)=D1-s; end end t=1:1:24; plot(t,D,t,R,r-); xlabel()。
16、,ylabel() title(季节项和随机项:红线为随机项) plot(t,D,k-,linewidth,2) hold on plot(t,R,r-,linewidth,2) xlabel(时间序列2001 年 2006 年(time:Year/季度); %给 X 轴加标签 ylabel(某商品销售额);%给 Y 轴加标签 legend(季节项,随机项,Location,NorthEast); title(某商品 2001 年- 2006 年每个季度销售额季节项与随机项变化曲线) s_estimate = 406.1787 315.7353 -938.2163 216.3020 05101。
17、52025 -1200 -1000 -800 -600 -400 -200 0 200 400 600 时间序列2001年 2006年(time:Year/季度) 某商品销售额 某商品2001年-2006年每个季度销售额季节项与随机项变化曲线 季节项 随机项 方法二二次曲线趋势 clear all;close all; X=4078.66 3907.06 2828.46 4089.5 4339.61 4148.6 2916.45 4084.64 4242.42 3997.58 2881.01 4036.23 4360.33 4360.53 3172.18 4223.76 4690.48 469。
18、4.48 3342.35 4577.63 4965.46 5026.05 3470.14 4525.94; Y=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24; 12,22,32,42,52,62,72,82,92,102,112,122,132,142,152,16 2,172,182,192,202,212,222,232,242; %最小二乘估计计算一元二次回归系数 R_c=inv(Y*Y)*Y*X; a=R_c(。
19、1) b=R_c(2) c=R_c(3) %趋势项二次回归曲线 for t=1:1:24; T_R=a+b*t+c*t.2; end %原始数据-趋势项=季节项+随机项 SR=X-T_R; %季节项 S_R(k)的回归估计 S=0;%季节项求和 for t=1:1:4 sum=0; for k=t:4:24; sum=sum+SR(k); end S_R(t)=sum/6; S=S+S_R(t); end S %计算季节项之和是否为 0 S_R %随机项的估计 for k=1:1:4 s=S_R(k); for j=k:4:24 D1=SR(j); R_R(j)=D1-s; end end %。
20、下一年(2007 年)每个季度的预测值 for t=25:1:28 T_R_P=a+b*t+c*t.2+SR(t-24) end T_R_P t=1:1:24; plot(t,SR,t,R_R,r) xlabel(),ylabel() title(季节项和随机项:红线为随机项) a = 3.7765e+003 b = -1.7649 c = 1.3986 S = -1.9991e+003 S_R = 1.0e+003 * -0.0936 -0.1840 -1.4380 -0.2835 T_R_P = 4.1454e+003 T_R_P = 4.0434e+003 T_R_P = 3.0372e。
21、+003 T_R_P = 4.3734e+003 T_R_P = 4.3734e+003 0510152025 -2000 -1500 -1000 -500 0 500 1000 季节项和随机项:红线为随机项 该模型二次曲线趋势模型为Tt=3.7765-1.7649t+ 1.3986t2 2、画出趋势项、季节项、和随机项的数据图 clear all;close all; X=4078.66 3907.06 2828.46 4089.5 4339.61 4148.6 2916.45 4084.64 4242.42 3997.58 2881.01 4036.23 4360.33 4360.53 3。
22、172.18 4223.76 4690.48 4694.48 3342.35 4577.63 4965.46 5026.05 3470.14 4525.94; Y=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24; 12,22,32,42,52,62,72,82,92,102,112,122,132,142,152,16 2,172,182,192,202,212,222,232,242; %最小二乘估计计算一元二次回归系。
23、数 R_c=inv(Y*Y)*Y*X; a=R_c(1); b=R_c(2); c=R_c(3); %趋势项二次回归曲线 for t=1:1:24; T_R=a+b*t+c*t.2; end %原始数据-趋势项=季节项+随机项 SR=X-T_R; %季节项 S_R(k)的回归估计 S=0;%季节项求和 for t=1:1:4; sum=0; for k=t:4:24; sum=sum+SR(k); end S_R(t)=sum/6; S=S+S_R(t); end S %计算季节项之和是否为 0 S_R %随机项的估计 for k=1:1:4 s=S_R(k); for j=k:4:24 D1。
24、=SR(j); R_R(j)=D1-s; end end %下一年(2007 年)每个季度的预测值 for t=25:1:28 T_R_P=a+b*t+c*t.2+SR(t-24) end t=1:1:24; T_R=a+b*t+c*t.2; plot(t,X,k-,linewidth,2); hold on plot(t,T_R,r-,linewidth,2); plot(t,SR,b-,linewidth,2) plot(t,R_R,m-,linewidth,2);xlabel(时间序列2001 年 2007 年 (time:Year/季度); %给 X 轴加标签 ylabel(某商品销售。
25、额);%给 Y 轴加标签 legend(原始数据图,趋势项(二次回归曲线), 季节项,随机项 ,Location,East); title(原始数据、趋势项(二次回归曲线图)、季节项与随机项) S = -1.9991e+003 S_R = 1.0e+003 * -0.0936 -0.1840 -1.4380 -0.2835 T_R_P = 4.1454e+003 T_R_P = 4.0434e+003 T_R_P = 3.0372e+003 T_R_P = 4.3734e+003 0510152025 -2000 -1000 0 1000 2000 3000 4000 5000 6000 时间。
26、序列2001年 2007年(time:Year/季度) 某商品销售额 原始数据、趋势项(二次回归曲线图)、季节项与随机项 原始数据图 趋势项(二次回归曲线) 季节项 随机项 4、预测下一年即 2007年每一季度商品销售额为4145.4 4043.4 3037.2 4373.4 案例 2 某商店某类商品 19992005 年各季度的销售额如下表所示 年份 1 季度 2 季度 3 季度 4 季度 1999 13792 18674 27456 17543 2000 14281 19842 26541 18352 2001 13100 19398 24755 16984 2002 15743 2001。
27、4 28300 19431 2003 14982 21430 27633 18520 2004 18520 20955 25376 19100 解 方法一 回归直线趋势 程序如下 clear; X= 13792 18674 27456 17543 14281 19842 26541 18352 13100 19398 24755 16984 15743 20014 28300 19431 14982 21430 27633 18520 18520 20955 25376 19100; Y= 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2。
28、,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24; %最小二乘估计计算一元线性回归系数 R_c= inv(Y* Y)* Y* X; a= R_c(1) b= R_c(2) %描原始数据图与趋势项回归直线图 t= 1:1:24; T_R= a+ b* t; plot(t,X,t,T_R,r) xlabel(),ylabel() title(原始数据图和趋势项回归直线图:红线为回归直线) 可输出下图 输出结果为a = 1.8358e+ 004 b = 133.7374 从图中可以看出数据随着季节的变动有明显的周期 s= 4从年平。
29、均可以看出数 据有上升的趋势 季节项与趋势项 程序如下 clear; X= 13792 18674 27456 17543 14281 19842 26541 18352 13100 19398 24755 16984 15743 20014 28300 19431 14982 21430 27633 18520 18520 20955 25376 19100; Y= 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24; %。
30、最小二乘估计计算一元线性回归系数 R_c= inv(Y* Y)* Y* X; a_R= R_c(1) b_R= R_c(2) %趋势项回归估计值 for t= 1:1:4; T_R= a_R+ b_R* t; end %原始数据-趋势项= 季节项+ 随机项 SR= X-T_R; %季节项 S_R(k)的回归估计 S= 0;%季节项求和 for t= 1:1:4 sum= 0; for k= t:4:24; sum= sum+ SR(k); end S_R(t)= sum/6; S= S+ S_R(t); end S;%计算季节项之和是否为 0 S_R %随机项的估计 for k= 1:1:4 。
31、s= S_R(k); for j= k:4:24 D1= SR(j); R_R(j)= D1-s; end end %下一天每个时段的预测值 for t= 25:1:28 T_R_P= a_R+ b_R* t+ SR(t-24) end T_R_P t= 1:1:24; plot(t,SR,t,R_R,r) xlabel(),ylabel() title(季节项和随机项:红线为随机项) 输出结果为: a_R =1.8358e+004 b_R =133.7374 S_R =1.0e+003 * -3.8236 1.1589 7.7835 -0.5716 T_R_P = 1.6600e+004 T。
32、_R_P = 2.1616e+004 T_R_P = 3.0532e+004 T_R_P 2.0753e+004 T_R_P = 2.0753e+004 方法二 二次曲线趋势 程序如下: clear; X= 13792 18674 27456 17543 14281 19842 26541 18352 13100 19398 24755 16984 15743 20014 28300 19431 14982 21430 27633 18520 18520 20955 25376 19100; Y= 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;。
33、 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24; 1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12 2,13 2, 14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2; %最小二乘估计计算一元二次回归系数 R_c= inv(Y* Y)* Y* X; a= R_c(1) b= R_c(2) c= R_c(3) %描原始数据图与趋势项二次回归曲线图 t= 1:1:24; T_R= a+ b* t+ c* t. 2;。
34、 plot(t,X,t,T_R,r) xlabel(),ylabel() title(原始数据图和趋势项二次回归曲线图:红线为回归曲线) 可输出下图: 输出结果为a = 1.8183e+004 b =174.1741 c = -1.6175 clear; X= 13792 18674 27456 17543 14281 19842 26541 18352 13100 19398 24755 16984 15743 20014 28300 19431 14982 21430 27633 18520 18520 20955 25376 19100; Y= 1,1,1,1,1,1,1,1,1,1,1。
35、,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24; 1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12 2,13 2, 14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2; %最小二乘估计计算一元二次回归系数 R_c= inv(Y* Y)* Y* X; a= R_c(1) b= R_c(2) c= R_c(3) %趋势项二次回归曲线 for t= 1:1:24;。
36、 T_R= a+ b* t+ c* t. 2; end %原始数据-趋势项= 季节项+ 随机项 SR= X-T_R; %季节项 S_R(k)的回归估计 S= 0;%季节项求和 for t= 1:1:4 sum= 0; for k= t:4:24; sum= sum+ SR(k); end S_R(t)= sum/6; S= S+ S_R(t); end S %计算季节项之和是否为 0 S_R %随机项的估计 for k= 1:1:4 s= S_R(k); for j= k:4:24 D1= SR(j); R_R(j)= D1-s; end end %下一年(2008 年)每个季度的预测值 fo。
37、r t= 25:1:28 T_R_P= a+ b* t+ c* t. 2+ SR(t-24) end T_R_P t= 1:1:24; plot(t,SR,t,R_R,r) xlabel(),ylabel() title(季节项和随机项:红线为随机项) 输出结果为 a = 1.8183e+004 b = 174.1741 c = -1.6175 S = -5.6063e+003 S_R = 1.0e+003 * -6.3620 -1.3795 5.2452 -3.1100 T_R_P =1.3887e+004 T_R_P = 1.8861e+004 T_R_P = 2.7731e+004 T_。
38、R_P = 1.7903e+004 T_R_P = 1.7903e+004 得到下图 案例 3 2006-2010 年贵州省农产品价格指数 单位 上年同期=100 贵州省农产品生产价格指数 年平均 2006 第一季度 98.47 第二季度 97.89 第三季度 101.29 第四季度 104.81100.615 2007 第一季度 107.22 第二季度 113.72 第三季度 112.98 第四季度 129.19115.7775 2008 第一季度 129.12 第二季度 125.65 第三季度 111.45 第四季度 105.37117.8975 2009 第一季度 94.62 第二季度 。
39、88.89 第三季度 93.09 第四季度 96.3593.2375 2010 第一季度 97.11 第二季度 106.43 第三季度 108.66 第四季度 112.77106.2425 clear; t=1:1:20;Sen=98.47 97.89 101.29 104.81 107.22 113.72 112.98 129.19 129.12 125.65 111.45 105.37 94.62 88.89 93.09 96.35 97.11 106.43 108.66 112.77 ;Ymean=100.615 100.615 100.615 100.615 115.7775 115.。
40、7775 115.7775 115.7775 117.8975 117.8975 117.8975 117.8975 93.2375 93.2375 93.2375 93.2375 106.2425 106.2425 106.2425 106.2425;plot(t,Sen,t,Ymean,r:); xlabel(),ylabel() title(数据图和分段趋势;虚线为年平均) 02468101214161820 85 90 95 100 105 110 115 120 125 130 数据图和分段趋势;虚线为年平均 分段趋势 clear; %原始数据 x_soure=98.47 97.89。
41、 101.29 104.81 ; 107.22 113.72 112.98 129.19; 129.12 125.65 111.45 105.37 ;94.62 88.89 93.09 96.35; 97.11 106.43 108.66 112.77;%趋势项(年平均) T_estimate=100.615 100.615 100.615 100.615; 115.7775 115.7775 115.7775 115.7775; 117.8975 117.8975 117.8975 117.8975; 93.2375 93.2375 93.2375 93.2375 ;106.2425 106。
42、.2425 106.2425 106.2425; %季节项 s(k)的均值估计 for k=1:1:4 sum=0; for j=1:1:5 sum=sum+x_soure(j,k)-T_estimate(j,k); end s_estimate(k)=sum/5; end s_estimate x=98.47 97.89 101.29 104.81 107.22 113.72 112.98 129.19 129.12 125.65 111.45 105.37 94.62 88.89 93.09 96.35 97.11 106.43 108.66 112.77; T=100.615 100.6。
43、15 100.615 100.615 115.7775 115.7775 115.7775 115.7775 117.8975 117.8975 117.8975 117.8975 93.2375 93.2375 93.2375 93.2375 106.2425 106.2425 106.2425 106.2425; D=x-T;%季节项的波动 %随机项的估计 for k=1:1:4 s=s_estimate(k); for j=k:4:20 D1=D(j); R(j)=D1-s; end end t=1:1:20; plot(t,D,t,R,r-); xlabel(),ylabel() ti。
44、tle(季节项和随机项:红线为随机项) s_estimate = -1.4460 -0.2380 -1.2600 2.9440 02468101214161820 -20 -15 -10 -5 0 5 10 15 季节项和随机项:红线为随机项 季节项的计算公式 54 .44 10 11 ( )()(),14 55 j kj kkjkj jj S kxTxTk + = = 随机项的估计 tttt Rx T S= 回归直线趋势 clear; X=98.47 97.89 101.29 104.81 107.22 113.72 112.98 129.19 129.12 125.65 111.45 10。
45、5.37 94.62 88.89 93.09 96.35 97.11 106.43 108.66 112.77; Y=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20; %最小二乘估计计算一元线性回归系数 R_c=inv(Y*Y)*Y*X; a=R_c(1) b=R_c(2) %描原始数据图与趋势项回归直线图 t=1:1:20; T_R=a+b*t; plot(t,X,t,T_R,r) xlabel(),ylabel() title(原始数据图和趋势项回归直线图。
46、:红线为回归直线) a = 109.1254 b = -0.2258 02468101214161820 85 90 95 100 105 110 115 120 125 130 原始数据图和趋势项回归直线图:红线为回归直线 clear; X=98.47 97.89 101.29 104.81 107.22 113.72 112.98 129.19 129.12 125.65 111.45 105.37 94.62 88.89 93.09 96.35 97.11 106.43 108.66 112.77; Y=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1。
47、,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20;%最小二乘估计计算一 元线性回归系数 R_c=inv(Y*Y)*Y*X; a_R=R_c(1) b_R=R_c(2) %趋势项回归估计值 for t=1:1:20; T_R=a_R+b_R*t; end %原始数据-趋势项=季节项+随机项 SR=X-T_R; %季节项S_R(k)的回归估计 S=0;%季节项求和 for t=1:1:4 sum=0; for k=t:4:20; sum=sum+SR(k); end S_R(t)=sum/5; S=S+S_R(t); end S;%计算季节项之和是。
48、否为0 S_R %随机项的估计 for k=1:1:4 s=S_R(k); for j=k:4:20 D1=SR(j); R_R(j)=D1-s; end end %下一年(2011年)每个季度的预测值 for t=21:1:24 T_R_P=a_R+b_R*t+SR(t-20) end T_R_P t=1:1:20; plot(t,SR,t,R_R,r) xlabel(),ylabel() title(季节项和随机项:红线为随机项) a_R = 109.1254 b_R = -0.2258 S_R = 0.6996 1.9076 0.8856 5.0896 T_R_P = 98.2442 T。
49、_R_P = 97.4383 T_R_P = 100.6125 T_R_P = 103.9066 T_R_P = 103.9066 02468101214161820 -20 -15 -10 -5 0 5 10 15 20 25 季节项和随机项:红线为随机项 所以 2011年的预测值为 98.24 97.43 100.61 103.91 案例 4 下面的数据是贵阳 2008 年 1 月到 2010年 12 月中每个月的机动车累计量单位吨数据如 下 年 一月 二月 三月 四月 五月 六月 七月 八月 九月 2008 330321332616 338307344973349818355947 36。
50、16353663913705 2009 391074396576 403725412300420335428562 435938444644534 2010 491525498704 507473516978527790536979 5458715541815637 月平 均 404306.7409298.7 416501.7424750.3432647.7440496 447814.7321678.74625 解根据以上的数据利用程序得出数据图。 0510152025303540 0 1 2 3 4 5 6 x 10 5 数据图和分段趋势;虚线为年平均 原始数据散点 预测数据散点 第一种方法。
51、 分段趋势 数据周期 s=12.从年平均看出数据有缓慢的逐年上升的趋势。最直接和最简单的方法是把趋 势项 t T定义为年平均值。对112j jT是 2008 年的数据平均这样可得到 1T = 12T= 357788.3= 13T= 24399951.3T= 25T= 36541219.9T= 利用原始数据 t x减去趋势项的估计 tT得到的数据基本只含有季节项和随机项可以用第 k 季节的平均值作为季节项( ),112s kk的估计如果用 , , j kj k xT分别第 j 年第 k 个月的 数据和趋势项则时刻( , )j k的时间次序指标为12(1)kj+。 32 ,12 ,12 10 11。
52、 ( )()(),112 36 j kkj j kkj jj s kxTxTk+ + = = 经计算得 128679.8S = 223687.8S = 35163,6S = 48236.2S = 5338.3S = 67509.5S = 714828.2S = 8111307.8,S = 929599.5,S = 1036741.8,S= 1143493.2,S= 1254375.5S=。 最后利用原始数据 t x减去趋势项的估计 tT和季节项的估计 tS得到的数据就是随机项 的估计 ,136tt t t RxTSt= 。 第二种方法 回归直线趋势 由于数据缓慢的上升趋势可以试用回归直线表示趋。
53、势项。 认为(), t x t满足一元线性回归模型 ,1,2,. tt xabtt=+= 利用程序得出以下数据 a = 2.9453e+005 b = 7.4840e+003 0510152025303540 0 1 2 3 4 5 6 x 10 5 原始数据图和趋势项回归直线图:红线为回归直线 根据以上所得趋势项 tT的估计值的回归直线 2.957.48tTt=+ 利用原始数据 t x减去趋势项的估计 tT得到的数据基本只含有季节项和随机项。我们仍可 以用第k月的平均值作为季节项( )s k的估计。即可利用方法一的公式为 32 ,12 ,12 10 11 ( )()(),112 36 j k。
54、kj j kkj jj s kxTxTk+ + = = 最后利用原始数据 t x减去趋势项的估计 tT和季节项的估计 tS得到的数据就是随机项 的估计 ,136tt t t RxTSt= 。 利用程序可得季节项和随机项的数据图 a = 3.4734e+005 b = -853.3208 c = 225.3324 S = -2.1079e+006 S_R = 1.0e+005 * Columns 1 through 11 -2.0434 -1.9935 -1.9215 -1.8390 -1.7600 -1.6815 - 1.6083 -2.8697 -1.4606 -1.3890 -1.3000。
55、 Column 12 -1.2129 T_R_P = 3.4592e+005 T_R_P = 3.6426e+005 T_R_P = 3.8645e+005 T_R_P = 4.1006e+005 T_R_P = 4.3230e+005 T_R_P = 4.5628e+005 T_R_P = 4.8027e+005 T_R_P = 5.0378e+005 T_R_P = 5.2716e+005 T_R_P = 5.5130e+005 T_R_P = 5.7791e+005 T_R_P = 6.0314e+005 T_R_P = 6.0314e+005 0510152025303540 -6 -。
56、5 -4 -3 -2 -1 0 1 2 3 x 10 5 季节项和随机项:红线为随机项 为得到 2011 年的预报值可利用公式 () 36(36)( ),1,2,12XkTkS k k+=+=。 这里() 36Xk+是用题中的 36 个观测数据对36k+个数据的预测值。 根据上面程序得出的数据得到 2011 年的预测值为 345925 364265 386455 410065 4323055 456285 480275 503785 527165 551305 577915 603145. 案例 5 根据从国家统计局和湖南省统计局收集到的数据资料 我将湖南省 1978 年-2010 年历年的 。
57、GDP、社会固定资本投资总额和社会从业人员的数据进 行整理归类得到如下表格 湖南省1978年2010年地区生产总值GDP、固定资产投资和从业人员统计资料 年份 GDP 固定资本投资 从业人员 1978 146.99 20.15 2280.05 1979 178.01 25.29 2328.12 1980 191.72 32.20 2399.95 1981 209.68 33.45 2449.46 1982 232.52 40.18 2541.05 1983 257.43 55.66 2594.37 1984 287.29 60.54 2672.86 1985 349.95 83.52 2728。
58、.71 1986 397.68 99.26 2808.87 1987 469.44 116.39 2904.1 1988 584.07 140.04 2998.64 1989 640.8 114.41 3091.37 1990 744.44 124.17 3158.42 1991 833.3 157.07 3222.43 1992 986.98 133.39 3278.83 1993 1,244.71 320.24 3345.61 1994 1,650.02 420.89 3400.29 1995 2,132.13 524.01 3467.31 1996 2,540.13 678.33 351。
59、4.16 1997 2,849.27 700.73 3560.29 1998 3,025.53 848.59 3603.17 1999 3,214.54 943.34 3601.39 2000 3,551.49 1066.27 3577.58 2001 3,831.90 1210.63 3607.96 2002 4,151.54 1355.87 3644.52 2003 4,659.99 1557.00 3694.78 2004 5,641.94 1981.29 3747.1 2005 6,596.10 2563.96 3801.48 2006 7,688.67 3242.39 3842.17。
60、 2007 9,439.60 4294.36 3883.41 2008 11,555.00 5649.69 3910.06 2009 13,059.69 7703.40 3935.21 2010 15,902.12 8618.20 资料来源湖南统计年鉴及作者个人搜集 以下运用 MATLAB 软件进行数据分析 clear all; close all;%提取数据 Y,textdata=xlsread(湖南省 1978-2010.xls);%从 Excel 文件中读取湖南省 1978 年-2010 年的相关经济数据 Y_row=any(isnan(Y),2); %返回一个逻辑向量非缺失观测数对应元。
61、素为 1 cardata=Y(Y_row,:); %剔除缺失数据,提取非缺失数据 datesort=cardata(1:end,1); %提取日期序号 cardata_X=cardata(1:end,2); %提取历年 GDP 数据 cardata_m=cardata(1:end,3); %提取固定资本投资数据 cardata_n=cardata(1:end,4); %提取从业人员数据 plot(datesort, cardata_X,k.,datesort,cardata_m,b- ,datesort,cardata_n,r+); %绘制数据散点图 197519801985199019952。
62、00020052010 0 2000 4000 6000 8000 10000 12000 14000 从图示我们可以看出湖南省在 1978 年-2010 年期间 GDP 的变化量和社会固定资产投资 呈现出相当吻合的正相关但是与从业人员的增长相关性显得不那么大。 clear; X=146.99 178.01 191.72 209.68 232.52 257.43 287.29 349.95 397.68 469.44 584.07 640.80 744.44 833.30 986.98 1244.71 1650.02 2132.13 2540.13 2849.27 3025.53 3214.54 3551.49 3831.90 4151.54 4659.99 5641.94 6596.10 7688.67 9439.60 11555.00 13059.69 15902.12 ; Y=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,2。