乘物游心计算机技术有限公司,乘物游心

艺术家通过书法寻找与天地精神的共鸣,将生命情感融入笔墨之中,体验创作带来的痛苦与快乐。书法不仅是艺术家的生命状态,也是他们面对世界的方式。在笔尖流淌的时间中,他们捕捉生命瞬间,通过黑白世界的变幻揭示人生的深邃意义。书法艺术的快乐源自内在的磨砺与探索,是形而上的精神苦旅,也是生命价值的终极追求。

超然物外,乘物游心,独与天地精神往来。这是一个艺术家对艺术追求的理想境界。

艺术家之所以选择艺术,就是因为他爱笔墨、爱丹青、爱音乐、爱光影……爱所有由物而升华出的美的物象、意境,借此创造出自己对于生命夏花之美的礼赞,并由此感悟宇宙生命之真谛,利万物而不争,来完成对生命价值的终极追求。

正像音乐家听见了旋律,摄影家邂逅了光影,画家看到了色彩一样,书法家看到了精良的宣纸、毛笔、墨汁也会激动不已的。

书写是书法家的生命状态,是自己营造的精神家园。避开现世的喧嚣沉进自己的自由世界,是一件令人愉快而幸福的事,也是中国文人自我修行的一种既好而又简单的方式。不然怎么会有那么多人愿意拿起毛笔,在一笔一画中做乘物游心的逍遥游呢?

墨虽分五色,但没有当官冷漠的脸色;毛笔虽软,骨头却硬,能写出挺拔劲健的线条,宛如耿直的脊梁;宣纸虽白,却并不阴冷,一遇墨汁就敏感兴奋立即做出热情的反应;在笔锋的引领下,墨在宣纸上不断幻化生成奇异、曼妙的点线,在心灵的召唤中,在手指手腕的拈转、手臂的挥动下,创造出生命绚烂的乐章,生命在书写的过程中延伸,并享受着独与天地精神往来的大快乐。

书法家心甘情愿让生命的时光在不知不觉的一点一画中消耗殆尽。喜怒哀乐全在笔锋触纸的那一瞬间表现出来。笔锋轻触纸面,此刻,所有带着动物秉性倔强的毛锋都归顺在你的手下,任凭你提、按、顿、挫、绞转使唤调遣它们。优秀的书法家总能娴熟地控制它们并与之合二为一直至双畅,达到天地人和的境界。

但是,这种幸福和快乐又是稍纵即逝的,生命中大部分时间是在砚田里默默耕耘和痛苦探索的坚守中度过的。

吴冠中先生曾说:“成为一个艺术家不那么简单……没有殉道的精神,就去改行。”因此,艺术家的快乐基石是磨难和痛苦,它与日常性的柴米油盐、家长里短、你是我非的恩恩怨怨的痛苦烦恼不一样。它是探索者在跋涉中遭遇的精神迷惘焦虑的痛苦,是形而上的笔墨精神之苦,它的过程是为了终极的精神大快乐,是尽精微、致广大的笔墨流动过程的享受。

时光在你的指尖流走,在你的笔下停留。书写将时间以笔墨点线的形式留住,每一件作品都能唤起你对曾经流逝青春的回忆。一个人的生命无论多长,在人类的历史长河里也是极其短暂的。我们没有必要悲伤,应像庄子那样乘物游心,凭借书法笔墨线条游心足矣;像孔子说的那样“朝闻道,夕死可矣”足矣;仨俩好友,沐浴春风天地之间,自由自在足矣;能像老子说的那样“载营魄抱一”,坚守笔墨,“抱一”而终足矣。

享受书写。无论痛苦还是快乐,都是天地的恩赐,都是对我们的生命和意志力的考验。书法家在书写中绽放激情,释放痛苦,实现生命价值的终极追求。

一个人用书写锁定一生的生命内容和形态,似乎有点儿单调,甚至让人难以理解。但是,能够深入笔墨的人都知道黑白交织的世界并不单调,在宣纸上,随着笔墨的不断变幻,阳舒阴惨也在不断更替。由此,你会深深洞悉书法及人生的“易经”。书法家在单调的黑白间变幻着无尽的生命轨迹,编织着人生的梦想。

乘物游心,乐此不疲。

胡秋萍:中国国家画院研究员、一级美术师,中国书法家协会理事、中国书法家协会草书艺术委员会委员、北京大学书法艺术研究所教授、河南省诗词学会副会长。书法作品参加全国及中青展三、四、五、六、七、八届展书展、获三届中青展优秀奖、河南省龙门书法艺术银奖等;荣获中国书协“德艺双馨”会员称号,2016年入选《中国书法报遴选》中国当代十大女性书法家,散文集《听花堂诗语》获河南省优秀图书二等奖。曾在马来西亚,澳大利亚,中国长沙、郑州、镇江、开封举办个人书法展览;出版《乘物游心·胡秋萍书法作品集》《秋萍墨韵》《秋萍诗韵》《胡秋萍书法精品集》《听花堂诗语》《胡秋萍书法艺术》等13部专著。

内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
【轴承故障诊断】基于SE-TCN和SE-TCN-SVM西储大学轴承故障诊断研究(Matlab代码实现)内容概要:本文介绍了基于SE-TCN(Squeeze-and-Excitation Temporal Convolutional Network)和SE-TCN-SVM的轴承故障诊断方法研究,重点针对西储大学(Case Western Reserve University, CWRU)的轴承数据集进行实验验证。研究通过构建SE-TCN模型提取振动信号中的深层时序特征,并利用SE模块增强关键特征通道的权重,从而提升故障识别精度。为进一步提高分类性能,还将SE-TCN提取的特征输入支持向量机(SVM)进行分类,形成SE-TCN-SVM混合模型。文中提供了完整的Matlab代码实现,便于复现实验结果。该方法在多工况、多故障类型下表现出良好的诊断准确率和鲁棒性,适用于工业设备的智能运维与早期故障预警。; 适合人群:具备一定信号处理和机器学习基础的研究生、科研人员及工程技术人员,尤其适合从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究人员;熟悉Matlab编程者更易上手。; 使用场景及目标:①应用于旋转机械设备(如电机、风机、齿轮箱等)的轴承故障诊断;②作为深度学习与传统分类器结合的典型案例,用于教学与科研参考;③目标是提升故障诊断的自动化水平与准确性,推动智能制造与预测性维护的发展。; 阅读建议:建议读者结合提供的Matlab代码,逐步运行并理解模型构建、特征提取与分类流程,同时尝试在其他公开数据集上迁移应用,以加深对SE-TCN架构与故障诊断流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值