一、整体架构优化
现在hive的整体框架如下,计算引擎不仅仅支持Map/Reduce,并且还支持Tez、Spark等。根据不同的计算引擎又可以使用不同的资源调度和存储系统.
整体架构优化点:
1、根据不同业务需求进行日期分区,并执行类型动态分区。 相关参数设置: 0.14中默认hive.exec.dynamic.partition=ture
2、为了减少磁盘存储空间以及I/O次数,对数据进行压缩
相关参数设置:
job输出文件按照BLOCK以Gzip方式进行压缩。
mapreduce.output.fileoutputformat.compress=true
mapreduce.output.fileoutputformat.compress.type=BLOCK
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec
map输出结果也以Gzip进行压缩。
mapreduce.map.output.compress=true
mapreduce.map.output.compress.codec=org.apache.hadoop.io.compr

本文总结了Hive优化的四种方法,包括整体架构优化、MR阶段优化、JOB优化和SQL优化。重点讨论了日期分区、数据压缩、SequenceFile存储、本地执行模式、MapJoin以及SQL查询策略等,旨在提升Hive查询效率和性能。
最低0.47元/天 解锁文章
612

被折叠的 条评论
为什么被折叠?



