吉林大学计算机学院孙铭会,基于lda模型的餐厅推荐方法研究-计算机科学.pdf

该研究提出了一种利用LDA模型的餐厅推荐方法。首先对餐饮评价进行情感分析,得到积极评价和好评率,然后使用LDA进行文本聚类生成餐厅标签,最后通过计算用户需求与餐厅标签的相似度进行个性化推荐。实验表明,这种方法能有效生成餐厅标签并准确推荐餐厅。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于lda模型的餐厅推荐方法研究-计算机科学

Vo1. 44 No. 7

第 44 卷第7 期 计算机科学

2017 年 7 月 COMPUTER SCIENCE July 2017

基于 LDA 模型的餐厅推荐方法研究

张晓阳1 秦贵和1 , 2 邹密1 孙铭会1 高庆洋3

(吉林大学计算机科学与技术学院 长春 130012)1

(符号计算与知识工程教育部重点实验室 长春 130012)2 (吉林大学软件学院 长春 130012)3

摘 要 随着网络的飞速发展,餐饮类的评价信息数量急剧增加。对餐饮评价进行有效分析不仅能够帮助消费者进

行用餐选择,还可以帮助商家对餐厅服务进行改进。为此,提出了一种基于 LDACLatent Dirichlet Allocation) 模型的

餐厅推荐方法。首先,对餐厅评价信息进行情感分类,获取积极评价和好评率;其次,根据 LDA 模型对积极评价信息

文本进行聚类,生成餐厅标签P 最后,计算用户需求与餐厅标签的相似度,根据相似度和好评率向用户推荐餐厅。基于

通过网络获取的真实餐饮评价信息进行实验,结采表明,该方法生成的餐厅标签的效果好,能准确地向用户推荐餐厅。

关键词 评价信息,LDA,情感分析,文本聚类,餐厅标签,餐厅推荐

中固法分类号 TP311 文献标识码 A DOI 10. 11896/j. issn. 1002-137X. 2017. 07. 032

Research 00 Recommeodatioo Method of Restaurant ßased 00 LDA Model

1 12 1 1 3

ZHANG Xiao-yang QIN Gui-he . ZOU Mi SUN Ming-hui GAO Qing-yang

(College of Computer Science and Technology ,]ilin University.Changchun 130012.China)1

(S严nbol Computation and Knowledge Engineer of Ministry of Education ,Changchun 130012 ,China)2

(College of Software ,]ilin University ,Changchun 130012 ,China)3

Abstract With the rapid development of the network ,the amount of the evaluation information of the food and bevera-

ge has increased dramatically. The effective analysis of the evaluation information can not only help the consumers

choose the suitable restaurant ,but also help the businesses improve service. For this purpose ,a restaurant recommenda

tion method based on LDAC口richlet Allocation L

数据集介绍:多品类农业目标检测数据集 数据集名称:多品类农业目标检测数据集 图片数量: - 训练集:11,911张图片 - 验证集:422张图片 - 测试集:124张图片 - 总计:12,457张高质量图片 分类类别: 涵盖51个农业相关类别,包括水果(苹果、香蕉、芒果、葡萄)、蔬菜(卷心菜、黄瓜、茄子、菠菜)、坚果(杏仁、腰果、榛子、核桃)、调味作物(辣椒、生姜、大蒜)及肉类(牛肉、鸡肉、猪肉)等,完整覆盖农业生产链关键品类。 标注格式: YOLO格式,包含标准化边界框坐标及类别标签,可直接用于目标检测模型训练。 1. 农业自动化分拣系统 支持开发AI驱动的分拣机器人,精准识别水果成熟度、坚果品类及蔬菜质量,提升加工效率。 1. 智能农场监测 用于无人机或摄像头系统,实时检测作物生长状态、病虫害区域及成熟作物分布。 1. 食品加工质量控制 集成至生产线视觉系统,自动检测原料种类(如肉类分类、坚果筛选),确保加工合规性。 1. 农业科研与教育 为农业院校提供多品类检测基准数据,支持算法研究及教学案例开发。 全链路覆盖 从田间作物(甜玉米、土豆)到加工原料(肉类、坚果),覆盖农业生产-加工全流程检测需求。 标注专业性 YOLO标注经多轮校验,边界框紧密贴合目标,支持复杂场景下的密集目标检测(如混合坚果分拣)。 场景多样性 包含自然光照、阴影遮挡、多角度拍摄等真实农业环境数据,强化模型鲁棒性。 高扩展性 兼容YOLOv5/v7/v8等主流框架,支持快速迁移至分类、计数等衍生任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值