计算机组成原理补码加法证明,补码加减法运算(计算机组成原理).ppt

《补码加减法运算(计算机组成原理).ppt》由会员分享,可在线阅读,更多相关《补码加减法运算(计算机组成原理).ppt(25页珍藏版)》请在皮匠网上搜索。

1、计算机组成原理2019年11月7日补码加减法运算加法规则:先判符号位,若相同,绝对值相加,结果符号不变若不同,则作减法,|大|-|小|,结果符号与|大|相同。减法规则:两个原码表示的数相减,首先将减数符号取反,然后将被减数与符号取反后的减数按原码加法进行运算。补码加减法运算1.原码加减法运算补码加法的公式:x补y补xy补(mod2)在模2意义下任意两数的补码之和等于该两数之和的补码。这是补码加法的理论基础。2.补码加法运算特点:不需要事先判断符号,符号位与码值位一起参加运算。符号位相加后若有进位,则舍去该进位数字。补码加法的特点:(1)符号位要作为数的一部分一起参加运算;(2)在模2的意义下相。

2、加,即大于2的进位要丢掉。其结论也适用于定点整数。例:x0.1001y0.0101求xy。解:x补0.1001y补0.0101x补0.1001y补0.0101xy补0.1110所以xy0.1110例:x0.1011y0.0101求xy。所以xy0.0110解:x补0.1011y补1.1011x补0.1011y补1.1011xy补10.01103.补码减法减法运算要设法化为加法完成。补码减法运算的公式:xy补x补y补x补y补公式证明:只要证明y补y补上式即得证。xy补x补y补(mod2)令y=x0补x补+x补故x补x补(mod2)证明:例:x0.1101y0.0110求xy。解:x补0.1101。

3、y补0.0110-y补1.1010xy0.0111解:x补=1.0011y补=1.1010-y补=0.0110x补1.0011+-y补0.0110x-y补1.1001例:x=-0.1101,y=-0.0110,求x-y=xy=0.0111x补0.1101-y补1.1010xy补10.0111溢出及与检测方法在定点小数机器中数的表示范围为|1。在运算过程中如出现大于1的现象称为“溢出”。1.概念解:x补=0.1011y补=0.1001x补0.1011+y补0.1001x+y补1.0100例:x=+0.1011y=+0.1001求x+y。例:x=-0.1101y=-0.1011求x+y。解:x补=。

4、1.0011y补=1.0101x补1.0011+y补1.0101x+y补0.1000两个正数相加的结果成为负数,这显然是错误的。两个负数相加的结果成为正数,这同样是错误的。发生错误的原因,是因为运算结果超出编码所能表示的数字大小。两个正数相加:结果大于机器所能表示的最大正数,称为上溢;两个负数相加:结果小于机器所能表示的最小负数,称为下溢。2.溢出的检测方法x补0.1011+y补0.1001x+y补1.0100x补1.0011+y补1.0101x+y补0.1000(1)单符号位法一个符号位只能表示正、负两种情况,当产生溢出时,符号位的含义就会发生混乱。如果将符号位扩充为两位(Sf1、Sf2),。

5、其所能表示的信息量将随之扩大,既能判别是否溢出,又能指出结果的符号。(2)双符号位法双符号位法也称为“变形补码”或“模4补码”。变形补码定义:x补=x0x24+x-2x0(mod4)任何小于1的正数:两个符号位都是“0”,即00.x1x2.xn任何大于-1的负数:两个符号位都是“1”,即11.x1x2xn两数变形补码之和等于两数和的变形补码,要求:两个符号位都看做数码一样参加运算;两数进行以4为模的加法,即最高符号位上产生的进位要丢掉。模4补码加法公式:x补+y补=x+y补(mod4)采用变形补码后数的表示:Sf1Sf200结果为正数,无溢出01结果正溢10结果负溢11结果为负数,无溢出即:结。

6、果的两个符号位的代码不一致时,表示溢出两个符号位的代码一致时,表示没有溢出。不管溢出与否,最高符号位永远表示结果的正确符号。溢出逻辑表达式为:VSf1Sf2式中:Sf1和Sf2分别为最高符号位和第二符号位,此逻辑表达式可用异或门实现。双符号位的含义如下:解:x补=00.1100y补=00.1000x补00.1100+y补00.100001.0100符号位出现“01”,表示已溢出,正溢。即结果大于+1例x=+0.1100y=+0.1000求x+y。解:x补=11.0100y补=11.1000x补11.0100+y补11.100010.1100符号位出现“10”,表示已溢出,负溢出。即结果小于-1。

7、例x=-0.1100y=-0.1000求x+y。从上面例中看到:当最高有效位有进位而符号位无进位时产生上溢;当最高有效位无进位而符号位有进位时产生下溢。(简单地说是正数相加为负数或负数相加为正数则产生溢出)故溢出逻辑表达式为:VCfCo其中Cf为符号位产生的进位Co为最高有效位产生的进位。此逻辑表达式也可用异或门实现。(3)利用进位值的判别法(单符号位)x补0.1100+y补0.10001.1000x补1.0100+y补1.10000.1100VC1CoVSf1Sf2判断电路基本的二进制加法减法器逻辑方程SiAiBiCiCi1AiBiBiCiCiAi1.一位全加器逻辑方程SiAiBiCiCi1。

8、=AiBiBiCiCiAi逻辑电路(一位全加器)常用的全加器逻辑电路逻辑符号2.n位的行波进位加减器n个1位的全加器(FA)可级联成一个n位的行波进位加减器。T被定义为相应于单级逻辑电路的单位门延迟。T通常采用一个“与非”门或一个“或非”门的时间延迟来作为度量单位。3.n位的行波进位加法器的问题时间延迟(1)对一位全加器(FA)来说,Si的时间延迟为6T(每级异或门延迟3T);Ci1的时间延迟为5T。(2)n位行波进位加法器的延迟时间ta为:9T为最低位上的两极“异或”门再加上溢出“异或”门的总时间;2T为每级进位链的延迟时间。tan2T9T(2n9)T考虑溢出检测时,有:当不考虑溢出检测时,。

9、有:ta(n-1)2T9Tta为在加法器的输入端输入加数和被加数后在最坏的情况下加法器输出端得到稳定的求和输出所需要的最长时间。ta越小越好。缺点:(1)串行进位它的运算时间长;(2)只能完成加法和减法两种操作而不能完成逻辑操作。多功能算术逻辑运算单元(ALU):不仅具有多种算术运算和逻辑运算的功能;而且具有先行进位逻辑。从而能实现高速运算。由一位全加器(FA)构成的行波进位加法器:十进制加法器十进制加法器可由BCD码(二十进制码)来设计它可以在二进制加法器的基础上加上适当的“校正”逻辑来实现。70111+6+0110131101(=D)+011010011(=13)30011+5+010181000X+Y+C10不调整X+Y+C10调整故:1.和为1015时,加6校正;2.和数有进位时,加6校正。和数(4位)有进位调整2800101000+9000010013700110001(=31)0000011000110111(=37)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值