摘要:
The signatures of the inner product matrices on a Lie algebra's highest weight representation are encoded in the representation's signature character. We show that the signature characters of a finite-dimensional Lie algebra's highest weight representations obey simple difference equations that have a unique solution once appropriate boundary conditions are imposed. We use these results to derive the signature characters of all $A_2$ and $B_2$ highest weight representations. Our results extend, and explain, signature patterns analogous to those observed by Friedan, Qiu and Shenker in the Virasoro algebra's representation theory.
展开