c++求n的几次方_数理统计|笔记整理(E)——Ch7-C习题课

dfb7f0d16e62bf0db17a2e3e2f2f33f4.png

上一节笔记传送门:数理统计|笔记整理(D)——Ch1-6习题课

——————————————————————————————————————

大家好!这一节我们依然会补充一些习题,内容则是正文的后半部分。

那么我们开始吧。

Chapter 7

Problem 16:
设​
为相互独立的样本,
​,
​已知,那么在均方损失下,求
​的MREE。

这个考察的就是平移变换族最优同变估计的求解公式,在这之前,我们需要找到一个完备充分统计量

​的同变估计,然后代入公式​
即可。那么首先根据指数族分布的性质,容易得到​
为完备充分统计量,并且有​
。那么这显然不是
​的同变估计(根据定义,每一个样本变化相同的量的时候,对应的估计量也要变化同样的数值)。所以要做一个标准化,也就是说我们要设
​。那么就可以得到​
(这是因为在未知参数设置为0的时候,
​)。这就完成了解答。
Problem 17:
​为独立同分布的样本,
​服从指数分布
​,
​已知,​
为未知的未知参数。

(1) 在绝对损失
​下,证明
​的MREE为
​。

(2) 若损失函数为
​,其中​
为已知正数,证明​
的MREE为
​。

这里要注意的是,因为考虑的不再是均方分布,所以Pitman公式是不行的!上面的公式也是不行的!我们需要借用我们证明这些公式所采用的走定义的方法,具体可以见正文的第7节。

对于第一问,首先要注意的就是在​

已知的情况下,充分统计量只有一个,为
​。在这种情况下,根据定义,我们要设
​,其中
​,并且求
​,使得​
在绝对损失下的风险函数最小。那么我们可以把风险函数写成

所以到这里,问题就转为了求

​的最小值(因为
​相对于
​来说是已知的,所以可以直接写成​
。我们只要求
​即可找到对应的
​ )。而很明显,这里所求解的期望,实质上是针对
充分统计量的分布的。意思就是要先考虑​
的分布。这里因为​
,在
​的时候,就变成了一般的指数分布。所以根据正文第B节介绍的性质(Proposition 1),我们有
​,也就是

所以我们可以得到

(这里我们直接去掉了条件

​积分,想想为什么)

这两个部分求导都有点小技巧。第一个部分其实就可以写成

所以第一个部分不难,第二个部分相对复杂一点,属于含参变量求导的内容(陈纪修《数学分析》第15章第1节),这里就记得求导分三个步骤:求积分上限,求积分下限,求积分本身。在这个题中,设积分的原函数为

​,那么这相当于是
​,求完导就是​
,其中​
,所以前两个部分求完结果为0。但是还有一个部分是对积分本身求导,这里实质上就是
​。所以根据​
,可以得到​
,解得
​。结合
​就可以得到这确实是一个极大值,所以最终就证明了我们的结论。

对于第二问,前面的推导都完全相同,也就是说

同样的思路,我们实质上就是要求

的最小值。这里因为第一问中已经说过​

。这是一个减函数,所以在​
的时候取最小值(同时要考虑函数定义域),这就证明了结论。
Problem 18:
​为独立同分布的样本,
​,
​且已知,​
且未知,在均方损失下求
​的MREE。

这是一个相似变换族,所以在这里我们要使用的是Pitman公式

代入即可得到式子的结果为

​,这里略去计算细节。

这个地方要注意的是,相似变换族还有一个公式是

但是这个公式要求充分统计量​必须完备。但是直观上来看,这里只有一个未知参数,却需要两个充分统计量,所以它可能是不完备的(当然事实上也确实如此,这个思路有点类似于上一节的第8题),因此不能够在这里使用这个公式。

Problem 19:
设样本
​服从尺度参数分布族
​,​
为未知的尺度参数。设
​为
​的某一同变估计,损失函数设置为​
,​
为某一个正整数。设
​的条件分布记为
​,并且​
为最大不变量。证明
​的MREE为​
,并且​
满足关系​

这一个题考察的是相似变换族下的求解极小值问题,和17题的思路相同,但做法略有区别。

根据假设,我们写成​

,并且根据我们的要求,需要​
达到最小,也就是说

在期望中,因为

​的存在,
​可以视为常数,因此我们可以将内部的期望拆开,写成

式子关于​

求导并设置为0,提出与积分变量
​无关的项,就可以得到结论。并且你还可以通过二阶导为
​恒正来得到这确实是一个极小值。
Problem 20:
设​
为独立同分布的样本,
​,如果仅仅观测到​
​未知 ,考虑均方损失下的两参数的MREE。

这是线性变换族的同变估计问题,但是我们没有在第7节介绍。所以这里主要是介绍这一类变换族的计算方法,而不强调它背后的理论证明。

注意到在这个分布中,

​为完备充分统计量,其中
​(这个我们已经用过很多次了),并且它们俩均为同变估计,独立,且有分布为
​,​
,所以根据公式​
,​
,就可以得到结果为
​,
​。

Chapter 8

Problem 21:
​为独立同分布的样本,
​,且
​, ​
,
​。

(1) 求​
的MLE,并判断其是否无偏。

(2) 计算​
无偏估计的C-R下界。

这个题目还是比较复杂的,我们一步步来看。

对于第一问,首先注意到,这是一个离散型分布,也就是说我们需要考虑一下将分布列写成分布函数的形式,就和写二项分布一样。在这里,我们显然是需要几个函数,它们在

​中的两个点上取值为0,而另外一个点上取值为1,这怎么找?

你第一反应当然是数值分析中的插值。比方说我们希望找到一个函数,满足

​,那么根据Newton插值公式,就只需要写成​
的形式即可(当然你不知道Newton插值公式这个题也可以做)。再代入
​可以知道​
。类似的你可以求得另外两个式子的指数部分。所以我们的密度函数应该写成

写出函数出来,就不难写出对数似然函数为

关于

​求导并令为0,就可以解得​

那么如何判断它是否无偏呢?你也能看出来,关键是在于量

​的期望。不失一般性,其实考虑的就是​
的期望。写得更具体一些,就是

这里我们将

​单独拆出来,是为了后面讨论方便。

到了这里,根据期望的定义,我们希望能够去掉这个分子上的

​。那么实际上根据

代回去,就可以得到

​,所以你也能够看出来关键点落在了​
上,那么如何对它进行讨论呢?

注意到如果​

服从题目条件中的分布,那么​
就服从
​,也就是说它一半可能是1,一半可能是0。在这种情况下,​
其实就对应
​种情况,​
就说明这​
个数中,有​
个为1,有​
个为0。这是一个非常标准的,高中就学过的
二项分布,所以只需要考虑​
的取值的各种情况,然后考虑它们分别可能发生的概率,再求和,就可以得到我们的结果为

(这里要注意,对于每一个单项,我们有

​,然后利用杨辉三角的结论)。

代回,就可以得到​

,所以它不是一个无偏估计。

对于第二问,其实考察的主要是Fisher信息量的计算。我们写出单样本的对数密度函数,然后求导,求方差,可以得到

那么我们最终的C-R下界就是

​。
Problem 22:
​为独立同分布的样本,​
。证明:​
,其中
​, ​

这个题其实就是根据第8节的Corollary 2来得到。再说明白点就是式子

(当然这个式子要求​

是一个CAN才可以,这个可以通过中心极限定理来说明)。这里因为我们有
​的表达式,所以可以得到​
。因为题目条件中有一个
​,所以我们设​
。在这之后,注意到
​,所以问题就落在了​
上,而这个在这里就是这个分布的方差。那么注意到这个分布本质上就是
​,所以就容易得到
​。一起代回就可以得到

再做一次相似变换,就可以我们最后的结论。

Chapter 9

Problem 23:
比较下面两组数据:
第一组:​

第二组:​

它们俩的均值是否有差异?​

这个题目考察的是一对样本的均值检验,并且方差未知。但是这里有个问题就是不知道方差是否相等(因为方差是否相等,对应的检验方法是不一样的),所以要比较均值,之前要先检验方差,因此我们先考虑做检验

这个检验问题的检验统计量是F统计量,并且它的拒绝域是

并且

​,再代入数字计算可以得到拒绝域为
​,所以这个数字并没有落在拒绝域,因此接受原假设,认为方差相同。

在这种情况下,就可以使用我们抽样定理中的第四个公式,也就是考虑

代入数字计算,可以得到

​,所以拒绝原假设,认为均值有明显的差异。
Problem 24:
现在在两个群体做调查,对某一件事投赞成或反对票。赞成为1,反对为0。第一个群体有120人,有50人投1,第二个群体有85人,有23人投1,判断两个群体的赞成比率有无显著差异?

这里我们可以将这两个群体的总体设置为

​,那么这就相当于是两个二项分布在比较,其中​
。那么这里的检验其实就是

对于二项分布,因为这里的样本量比较大,所以可以考虑大样本检验。注意到这里我们有

那么在

​的成立条件下,根据正态分布的性质,我们统计量可以设置为

现在的关键是这里的​

应该是多少。注意到我们在​
的条件下,两个群体是没有显著差异的,因此这种情况下如果对联合密度函数做极大似然估计,对应的情况就是这两个群体被混在一起,
视为一个群体的情况。所以这里的估计值依然是均值,但是考虑的是两个群体的总人数。所以
​。再代入
​,就可以算出来
​,所以拒绝原假设,认为两个群体的赞成比率有显著差异。

Chapter A

Problem 25:
设​
为独立同分布的样本,考虑假设检验问题​
,求检验问题的水平为
​的MPT。其中​

求解单点假设检验的MPT,使用N-P准则(或者叫N-P引理)即可,也就是说先求出似然比,然后再让其满足水平条件。

这里不难求出似然比为

这个函数是离散的,因此根据N-P准则,我们要求

​。其中
​,
​。那么现在的问题就是求
​。

直观来看,这个​

应该只能取
​,为什么?你可以看到这里的
​只有一个点,所以如果它的样本值都在​
上面肯定是不行的,那么都在​
下面呢?好像也不行,因为这对应上了​
的情况,没有给
​留下余地(这里的潜在意思就是​
)。所以我们有了这个思路,现在回头来证明一下这个结论。

如果​

偏大(
​),那么这个时候,
​,并且​
是空集,那么这个时候,​
(这个时候要求
​,与
​不相交),而
​(​
为空集),那么这个时候如果要条件满足,必须​
,这是不可能的。

如果​

偏小(
​),那么这个时候,
​,​
为空集。类似的推论可以得到这个时候要求
​,所以这也不可能。因此​
。这个时候同样的推论,可以得到
​,因此可以得到MPT为
Problem 26:
​为独立同分布的样本,
​,
​。证明:​
是假设检验问题​
的水平为
​的UMPT。

根据我们正文第10节说的方法,要求解一个UMPT,你就首先需要求解一个简单情形下的MPT。所以这里考虑问题

​。那么我们第一步就要证明题目中所给定的检验函数是一个水平为​
的检验,也就是说要求解积分
​。

由次序统计量的公式,可以得到它的分布为

​,根据这个,划分积分区域,经过简单的二重积分计算,就可以得到

现在设​

为检验问题的任意一个水平为
​的检验,下面只需要证明
​即可。这需要对​
做一些讨论。

如果

​,那么这个时候根据检验函数的定义,
​是恒成立的,所以在全区域上的期望积分自然也就是1,那么肯定会有​
成立。那么如果
​,则积分区域就变成了​
,同时注意到,如果要​
,那么要不
​,要不​
(分别对应最小统计量和最大统计量)。所以划分积分区域可以得到

注意在坐标系中画出区域会更直观的理解这个积分的上下限。

现在再回头看​

,那么同样的根据公式,我们有

就这一个公式当然不能解决什么问题,因为​

是任意的。这里有一个技巧,我们可以考虑一下
​,因为它是有界的(​
),而这里注意到​
,所以考虑拆分一下积分区域就可以想办法做到放缩。具体来说,就是

(注意积分顺序的变换),对第一个式子放缩,并且考虑对第二个式子的

​放缩至1,可以得到

根据条件,第一个式子

​,第二个式子直接求积分可以得到为​
。加在一起就可以得到结论成立。也就是说我们已经证明出了它是假设检验问题的MPT。

接下来注意到,因为

​与​
无关,所以可以把它推广成为假设检验问题​
的UMPT。还差一步就是推广成为
​的UMPT,这一步就需要证明在​
的时候,有​

这个的求解本质上还是二重积分的计算。如果​

,那么因为​
,所以有
​恒成立,那么当然期望会
​。如果
​,那么本质上就是

根据它是增函数就可以证明结论。

Problem 27:
​为独立同分布的样本,​
服从均匀分布​
。证明​
为假设检验问题
​的一个水平为​
的UMPT。其中​

这个题目和Problem 26类似,这里是要证明一个双边检验的结论,因此思路上相同,但是做法上会略有区别。

考虑简单假设检验问题​

,根据正文中的说法,我们先证明这个​
是MPT。

首先自然要证明它是一个水平为​

的检验。注意到

(注意到

​)所以它是一个水平为
的检验。现在考虑设​
为任意一个满足水平条件的检验,因为充分性原则,
​可以写成是​
的函数,所以形式没有问题。那么接下来就是要说明​
对于任意的
​成立即可。

还是一样的讨论思路。如果

​,这个时候根据均匀分布的取值范围可以知道
​,所以​
恒成立,那么当然不等式成立。如果说​
,这个时候根据分布,
​是不成立的,所以对应的积分就只有
​的部分。这个时候,就有

(注意

是一个充分统计量的函数,所以期望的积分是关于充分统计量密度函数来的)。注意到水平条件
​,所以必要的放缩是必须的,在这里注意到​
,所以有

这就证明了结论。

事实上,你也可以通过分析法看出来为什么我们这里把

​设为界点,又多做了一次讨论。

最后还有一种情况是

​,这个时候的对应的
​为

那么注意到

第一项的证明和前一部分完全一样,第二项利用一下​

放缩即可,这里略去细节。

最后,只需要说明它是题设中假设检验问题的UMPT即可。这个只需要根据这个

​仅仅与
有关​,与
​无关即可得到结论。

这两个题都算是比较复杂的题目,需要细细体会一下。

Chapter B

Problem 28:
设总体​
的密度函数为
​,
​为摘选自此总体的简单随机样本。

(1) 证明:​
的分布与
​无关,并求出此分布。

(2) 求​
的置信水平为​
的置信区间。

这个题是想介绍一下枢轴量法的应用。

第一个题很简单,因为相当于

​,所以​
,设
​,那么根据次序统计量公式容易得到​
的密度函数为​
,这就足够证明结论了。

对于第二个题,我们相当于要求

​,使得

并且要使得区间长度尽可能的短。这个题目是比较好满足这个条件的,因为

​是一个单减的函数,所以积分的范围越靠前越好(想想为什么?),因此可以得到
​,这样的话我们的置信区间就可以得到为
​。
Problem 29:
​为独立同分布的样本,​
,其中​
已知,​
未知。试找到一个枢轴量,并根据此枢轴量构造
​的一个水平为​
的置信区间。

这是我校18-19年《数理统计》期中考试的最后一题,考察的也是枢轴量法。但是这里并没有给定线索,而是需要我们自己去寻找,这个怎么做?

我们要注意的是区间估计本质上是从点估计发展过来的,也就是说,我们应该先从点估计得到的统计量下手,因此一般情况下我们都会先考虑统计量的极大似然估计。在这里也就是

​。而根据已有的结论不难得到​
的密度函数为
​,由此可以得到这个是满足条件的枢轴量。

那么现在我们希望区间长度最小,那么注意到这个密度函数是一个增函数,因此越靠近数轴的右边越好,因此右端点一定是1。换句话说,我们希望确定一个

​,使得
​,直接积分可以得到
​。因此可以得到区间的不等式为
​,化简一下即可得到区间估计的表达式。

至于其它求解置信区间的问题,因为都比较套路,这里就不多说了。

Problem 30:
设​
为独立同分布的样本,
​服从均匀分布​
,求分布水平为
​的容忍上下限和容忍区间。

这个题是一个非常标准的考察容忍区间计算方法的题目。我们首先求容忍下限。注意到根据定义,这里就相当于要求分布的​

分位点​
的水平为​
的置信下限。而又因为

所以可以得到​

,因此对应的它的置信下限就是​
,而这个​
就是分布中​
的水平为​
的置信下限。根据枢轴量法,不难得到​
,所以相乘起来即可得到​
为容忍下限。类似的方法可以推导出​
为容忍上限。而容忍区间,根据定义,其实就是两边各分一半的
​。也就是说

是我们要求的容忍区间。

关于Chapter C的方差分析与贝叶斯统计,我们在正文中已经说清楚了他们的套路,也给出了一些例题。所以这里我们就不再额外补充啦。

到此,我们的习题课也正式结束,这也宣告了我们《数理统计》系列告一段落。有的人可能会好奇关于计算统计的内容,专栏中已经有收录比较好的一些文章,当然针对以后需要应用的重要的内容(比如EM算法,MCMC算法等),我们会找时间再将它们补上(当然应该会另开系列了)。

——————————————————————————————————————

5cf8a73101ec0608190789fcdec01728.png

本专栏为我的个人专栏,也是我学习笔记的主要生产地。任何笔记都具有著作权,不可随意转载和剽窃

个人微信公众号:cha-diary,你可以通过它来获得最新文章更新的通知。

《一个大学生的日常笔记》专栏目录:笔记专栏|目录

《GetDataWet》专栏目录:GetDataWet|目录

想要更多方面的知识分享吗?可以关注专栏:一个大学生的日常笔记。你既可以在那里找到通俗易懂的数学,也可以找到一些杂谈和闲聊。也可以关注专栏:GetDataWet,看看在大数据的世界中,一个人的心路历程。我鼓励和我相似的同志们投稿于此,增加专栏的多元性,让更多相似的求知者受益~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值