pandas计算含缺失值中列平均值_Python数据分析 | 缺失数据.(10)

本文介绍了Pandas中处理缺失值的方法,包括如何检测、填充和删除NaN值。通过isnull和notnull方法检测缺失值,fillna进行填充,可以使用前向填充、后向填充或插值等方法。dropna则用于删除含有缺失值的行。理解这些技巧对于数据分析至关重要,因为大多数数据集都会遇到缺失值问题。
摘要由CSDN通过智能技术生成

几乎任何一个数据集都含缺失数据。缺失数据有多种表示形式。在数据库中,缺失数据表示为NULL值;在某些编程语言中使用NA表示。根据数据的来源,缺失值可能是空存字符串(‘’)或数值(比如88或99)。在Pandas值使用NaN表示缺失值。

Pandas中的NaN值来自NumPy库,在NumPy中,缺失值有几个表达形式:NaN、NAN或者nan,但它们都是等同的。

缺失值和其它类型的数据不同,实际上它们无甚意义。数据缺失了,也就无所谓等于或不等于。NaN也不等同于0或者空字符串(‘’)。

653b6dc224dba79d6ffe6591aac51869.png

Pandas可以使用isnull方法测试某个值是否为缺失值,notnull方法也可用于判断某个值是否为缺失值。

c05c23dde3ebb82f903e116a83c65283.png

数据加载时Pandas会自动查找缺失数据单元,并在Data Frame中对该单元给出一个NaN值。在read_csv函数中,有3个参数与缺值的读取有关:na_values、keep_default_na和na_filter。

na_values参数允许指定额外的缺失值或NaN值,读取文件时,可用传

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值