matlab怎样求线性方程组,MATLAB线性方程组求解

有唯一解线性方程组求法

对于一般的,有唯一解的线性方程组,我们可以转换成矩阵的形式:

Ax=bAx=bAx=b 则可以用矩阵运算求解x,即x=A\b

有无穷解的线性方程组求法

齐次线性方程组的通解

求解齐次线性方程组基础解系的函数是null

Z=null(A)表示返回矩阵A的基础解系组成的矩阵。Z还满足ZTZ=I

Z=null(A,‘r’)得出的Z不满足ZTZ=I,但得出的矩阵元素多为整数,顾一般都带参数r。

非齐次线性方程组通解

非齐次线性方程组在求出基础解析后还要求一个特解。对于矩阵形式的非齐次线性方程组Ax=bAx=bAx=b 特解x0x_0x0​的求法为x0=pinv(A)*b;其中函数pinv的意思是伪逆矩阵。

例如求解线性方程组:

f(x)={x1+2x2+2x3=1x2−2x3−2x4=2x1+3x2−2x4=3f(x)=\left\{

\begin{aligned}

x_1+2x_2+2x_3=1\\

x_2-2x_3-2x_4=2\\

x_1+3x_2-2x_4=3\\

\end{aligned}

\right.f(x)=⎩⎪⎨⎪⎧​x1​+2x2​+2x3​=1x2​−2x3​−2x4​=2x1​+3x2​−2x4​=3​

由输出结果可知方程的解为

x=k1[−6210]+k2[−4201]+[13/7746/77−1/11−40/77](k1,k2∈R)x=k_1 \begin{bmatrix} -6\\2\\1\\0\\ \end{bmatrix}

+k_2 \begin{bmatrix} -4\\2\\0\\1\\ \end{bmatrix}

+\begin{bmatrix} 13/77\\46/77\\-1/11\\-40/77\\ \end{bmatrix}

\quad (k_1,k_2 ∈R)x=k1​⎣⎢⎢⎡​−6210​⎦⎥⎥⎤​+k2​⎣⎢⎢⎡​−4201​⎦⎥⎥⎤​+⎣⎢⎢⎡​13/7746/77−1/11−40/77​⎦⎥⎥⎤​(k1​,k2​∈R)

利用Gauss消元法求解线性方程组

在线性代数中,我们主要的方法就是Gauss消元法。MATLAB中将矩阵化为行阶梯型的函数是:R=rref(A)R=rref(A)R=rref(A)

我们可以用线性代数知识,编写一个函数,给入矩阵A和b,给出方程的解,函数自动判断是有唯一解还是无穷解。

先搭建出函数的框架

function varargout = ZJX_solvebygauss(varargin)

%ZJX_solvebygauss 用高斯消元法解线性方程组

% A是系数矩阵,b是常熟矩阵。varargin={A,b};如果b为0,则不输入b

% varargout=[S flag],S给出结果

% flag为0无解;1唯一解;2齐次通解;3非齐次通解

A=cell2mat(varargin(1));

Alie=length(A);Asum=numel(A);Ahang=Asum/Alie;

if(nargin==2)

b=cell2mat(varargin(2));

else

b(Ahang,1)=0;

end

B=A; B(:,Alie+1)=b;

varargout(1)={S};

if(nargout==2)

varargout(2)={flag};

end

end

现在完成了基本框架的构建,其中varargout等含义参见函数部分的内容。现在我们已经得到了矩阵A、b,A的行数Ahang,A的列数Alie,增广矩阵B。现在在中间的空格位置进行运算。

程序设计

Ar=rank(A); Br=rank(B);

B=rref(B);

if (Ar

flag=0; S=0;

elseif (Ar==Br && Ar==Alie)

flag=1; S=B(:,Alie+1);

else

%将能构成单位矩阵的列号存储在行向量I中,即存储了极大线性无关向量的编号

%将剩余列号存入行向量C中

for i=1:Ar

for j=1:Alie

if(B(i,j)==1)

I(i)=j;

break

end

end

end

C=setdiff(1:Alie,I);

%由线性代数知识可得基础解系

ILim=length(I); CLim=length(C);

S(Alie,CLim)=0;%初始化S,S行数为A列数,S列数为C的维度

for i=1:CLim

S(C(i),i)=-1;

for j=1:ILim

S(I(j),i)=B(j,C(i));

end

end

if(nargin==1)

flag=2;

else

flag=3;

S(Alie,CLim+1)=0;

for i=1:Ar

S(I(i),CLim+1)=B(i,Alie+1);

end

end

end

测试

同样求之前的方程组通解

{x1+2x2+2x3=1x2−2x3−2x4=2x1+3x2−2x4=3\left\{

\begin{aligned}

x_1+2x_2+2x_3=1\\

x_2-2x_3-2x_4=2\\

x_1+3x_2-2x_4=3\\

\end{aligned}

\right.⎩⎪⎨⎪⎧​x1​+2x2​+2x3​=1x2​−2x3​−2x4​=2x1​+3x2​−2x4​=3​

如图,带方程b则S最后一列是特解,不带b则没有特解。日后我们可以直接调用这个函数方便求解。而且比较结果我们发现,这样求出来的特解形式要简单一些。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值