基于 OT-JSON 与 Immer 设计低代码/富文本场景的状态管理方案

在复杂应用中,例如低代码、富文本编辑器的场景下,数据结构的设计就显得非常重要,这种情况下的状态管理并非是reduxmobx等通用解决方案,而是需要针对具体场景进行定制化设计,那么在这里我们来尝试基于Immer以及OT-JSON实现原子化、可协同、高扩展的应用级状态管理方案。

描述#

ImmerOT-JSON结合的想法来自于slate,我们首先来看一下slate的基本数据结构,下面的例子是高亮块的描述。这个数据结构看起来非常像零代码/低代码的结构,因为其含有很多children,而且存在对节点的装饰描述,即boldborderbackground等属性值。

  
Copy
[ { "highlight-block": { border: "var(--arcoblue-6)", background: "var(--arcoblue-3)", }, children: [ { children: [{ text: "🌰 " }, { text: "举个栗子", bold: true }] }, { children: [{ text: "支持高亮块 可以用于提示文档中的重要内容。" }] }, ], }, ];

那么这里的设计就很有趣,之前的文章中我们就聊过,本质上低代码和富文本都是基于DSL的描述来操作DOM结构,只不过富文本主要是通过键盘输入来操作DOM,而无代码则是通过拖拽等方式来操作DOM,这里当然是有些共通的设计思路,这个结论其实就是来自于slate的状态管理。

本文实现的相关DEMO都在https://github.com/WindRunnerMax/webpack-simple-environment/tree/master/packages/immer-ot-json中。

基本原则#

前边我们也提到了数据结构的具体场景进行定制化设计,这部分主要指的是JSON的结构非常灵活,像是高亮块的描述,我们可以将其设计为单独的对象,也可以将其拍平,以Map的形式来描述节点的装饰,再例如上述文本内容则规定了需要用text属性描述。

原子化的设计非常重要,在这里我们将原子化分为两部分,结构的原子化与操作的原子化。结构的原子化意味着我们可以将节点自由组合,而操作的原子化则意味着我们可以通过描述来操作节点状态,这两者的组合可以方便地实现组件渲染、状态变更、历史操作等等。

节点的自由组合可以应用在很多场景中,例如表单结构中,任何一个表单项都可以都可以变为其他表单项的嵌套结构,组合模式可以设定部分规则来限制。操作的原子化可以更方便地处理状态变更,同样是在表单中,嵌套的表单项展开/折叠状态就需要通过状态变更实现。

当然,原子化执行操作的时候可能并没有那么理想,组合ops来执行操作表达类似action范式的操作也是很常规的操作,这部分就是需要compose的处理方式。并且状态管理可能并不是都需要持久化,在临时状态管理中,client-side-xxx属性处理很容易实现,AXY+Z值处理则会更加复杂。

协同算法的基础同样是原子化的操作,类似于redux的范式action操作非常方便,但是却无法处理协同冲突,同样也不容易处理历史操作等。这一局限性源于其单向、离散的操作模型,每个action仅表达独立意图,而缺乏对全局状态因果关系(操作A影响操作B状态)的显式维护。

OT-JSON则可以帮助我们将原子化的操作,扩展到协同编辑的复杂场景中,通过引入操作变换OT,以此来解决冲突。当然仅仅是前端引入操作变换是不够的,还需要引入后端的协同框架,例如ShareDB等。当然,CRDT的协同算法也是可行的选择,这属于应用的选型问题了。

此外,OT-JSON天然可以支持操作历史的维护,每个操作都携带了足够的上下文信息,使得系统能够追溯状态变化的完整链条,为撤销/重做、版本回溯等高级功能提供了基础。操作之间的因果关系也被显式地记录下来,使得系统能够做到操作A必须在操作B之前应用这样的约束条件。

扩展性这部分的设计可以是比较丰富的,,树形结构天然适合承载嵌套式数据交互。例如飞书文档的各种模块,都是以Blocks的形式扩展出来的。恰好飞书的数据结构协同也是使用OT-JSON来实现的,文本的协同则是借助了EasySync作为OT-JSON的子类型来实现的,以此来提供更高的扩展性。

当然,扩展性并不是说可以完全自由地接入插件,插件内的数据结构还是需要整体接受OT-JSON的调度,并且文本这种特殊的子类型也要单独调度。以此系统框架能够将各种异构内容模块统一纳入协同体系,并且可以实现统一的状态管理、协同编辑、历史记录等功能。

Immer#

Immer简化了不可变数据的操作,引入一种称为草稿状态的概念,以此允许开发者以直观的可变方式编写代码,同时底层自动生成全新的不可变对象。传统方式中,修改深层嵌套的数据需要小心翼翼地展开每一层结构,既容易出错又让代码显得复杂。

  
Copy
const reducer = (state, action) => { return { ...state, first: { ...state.first, second: { ...state.first.second, value: action, }, }, }; };

Immer通过创建一个临时的草稿对象,让开发者像操作普通对象一样直接赋值、增删属性,甚至使用数组的pushpop等方法。完成所有修改后,便基于草稿状态的变更记录,生成变更后与原始数据结构共享未修改部分的新对象。这种机制既避免了深拷贝的性能损耗,又保证了数据的不可变性。

  
Copy
const reducer = (state, action) => { state.first.second.value = action; };

Immer中非常重要的一点是,在使用Proxy代理修改这个过程中,仅在访问到数据的时候才会创建Proxy对象,也就是说这是一种按需代理的懒代理机制,这样就不需要创建草稿时遍历创建所有代理。这种机制极大地减少了不必要的性能开销,尤其当处理大型复杂对象时。

例如修改了一个深层嵌套属性draft.a.b.c = 1Immer会沿着访问路径逐层生成代理,Proxy(a)Proxy(a.b)Proxy(a.b.c)。因此使用Immer的时候还需要注意,在修改对象的时候尽可能保持仅读取需要修改的部分,其他的代理操作要在草稿,避免不必要的代理生成。

OT-JSON#

slate中实现了9种原子操作来描述变更,这其中包含了文本处理insert_text、节点处理insert_node、选区变换set_selection的操作等。但是在slate中虽然实现了操作变换与操作反转等,但是并未单独抽离独立的包,因此很多设计都是内部实现的,不具有通用性。

  • insert_node: 插入节点。
  • insert_text: 插入文本。
  • merge_node: 合并节点。
  • move_node: 移动节点。
  • remove_node: 移除节点。
  • remove_text: 移除文本。
  • set_node: 设置节点。
  • set_selection: 设置选区。
  • split_node: 分割节点。

类似的,在OT-JSON中实现了11种操作,且json0的结构设计已经过了广泛的生产环境验证,核心目标是通过结构化的数据表达,确保不同客户端之间的数据一致性。此外,富文本场景中SubType仍然需要扩展,例如飞书的EasySync类型扩展,那自然就需要更多的操作来描述变更。

  • {p:[path], na:x}: 在指定的路径[path]值上加x数值。
  • {p:[path,idx], li:obj}: 在列表[path]的索引idx前插入对象obj
  • {p:[path,idx], ld:obj}: 从列表[path]的索引idx中删除对象obj
  • {p:[path,idx], ld:before, li:after}: 用对象after替换列表[path]中索引idx的对象before
  • {p:[path,idx1], lm:idx2}: 将列表[path]中索引idx1的对象移动到索引idx2处。
  • {p:[path,key], oi:obj}: 向路径[path]中的对象添加键key和对象obj
  • {p:[path,key], od:obj}: 从路径[path]中的对象中删除键key和值obj
  • {p:[path,key], od:before, oi:after}: 用对象after替换路径[path]中键key的对象before
  • {p:[path], t:subtype, o:subtypeOp}: 对路径[path]中的对象应用类型为t的子操作o,子类型操作。
  • {p:[path,offset], si:s}: 在路径[path]的字符串的偏移量offset处插入字符串s,内部使用子类型。
  • {p:[path,offset], sd:s}: 从路径[path]的字符串的偏移量offset处删除字符串s,内部使用子类型。

除了原子化的操作之外,最核心的就是操作变换的算法实现,这部分是协同的基础。JSON的原子操作并非完全独立的,必须要通过操作变换来保证操作的执行顺序可以遵循其因果依赖。同时,对于操作反转的实现也是非常重要的,这部分意味着我们可以实现撤销、重做等功能。

数据结构#

在低代码、富文本、画板/白板、表单引擎等等编辑器应用场景中,仅仅是使用JSON数据结构来描述内容是不够的。类比在组件中,div是描述视图的,状态是需要额外定义的,并且通过事件驱动来改变状态。而在编辑器场景中,JSON既是视图描述也是要操作的状态。

那么基于JSON来渲染视图这件事并不复杂,特别是在表格渲染中的场景会很常见。而通过操作来变更数据结构则并没有那么简单,那么基于OT-JSON我们可以实现原子化的数据变更,与Immer结合则可以配合视图的渲染刷新,在这里我们先以单元测试的方式测试数据结构的操作变换。

基本操作#

针对数据的基本操作,无非就是增删改查,查这部分主要就是根据path读数据即可,而我们关注的主要是增删改这部分与Immer的结合。首先是insert操作,p表示路径,li表示插入值,在变更之后就可以检查变更后的值是否正确,以及未修改对象的引用复用。

  
Copy
// packages/immer-ot-json/test/insert.test.ts const baseState = { a: { b: [1] as number[], }, d: { e: 2 }, }; const draft = createDraft(baseState); const op: Op = { p: ["a", "b", 0], li: 0, }; json.type.apply(draft, [op]); const nextState = finishDraft(draft); expect(nextState.a.b[0]).toBe(0); expect(nextState.a.b[1]).toBe(1); expect(nextState.a).not.toBe(baseState.a); expect(nextState.a.b).not.toBe(baseState.a.b); expect(nextState.d).toBe(baseState.d); expect(nextState.d.e).toBe(baseState.d.e);

删除操作也是类似的实现,ld表示删除值,注意这里是删除的具体值而不是索引,这主要是为了invert转换的方便。同样可以看到,Immerdraft对象在变更之后,只有变更的部分是新的对象,其他部分是引用复用的。

  
Copy
// packages/immer-ot-json/test/delete.test.ts const baseState = { a: { b: [0, 1, 2] as number[], }, d: { e: 2 }, }; const draft = createDraft(baseState); const op: Op = { p: ["a", "b", 1], ld: 1, }; json.type.apply(draft, [op]); const nextState = finishDraft(draft); expect(nextState.a.b[0]).toBe(0); expect(nextState.a.b[1]).toBe(2); expect(nextState.a).not.toBe(baseState.a); expect(nextState.a.b).not.toBe(baseState.a.b); expect(nextState.d).toBe(baseState.d); expect(nextState.d.e).toBe(baseState.d.e);

更新操作在OT-JSON中实际上需要同时定义oiod,相当于两个原子操作的组合,具体的实现是先插入后删除。同样的,将两者的值都放置出来而不是仅处理索引,在invert时就不需要snapshot来辅助得到原始值,并且Immer的复用效果仍然没有问题。

  
Copy
// packages/immer-ot-json/test/update.test.ts const baseState = { a: { b: { c: 1 }, }, d: { e: 2 }, }; const draft = createDraft(baseState); const op: Op = { p: ["a", "b", "c"], // 应用时未校验, 但为了保证 invert 的正确性, 这里需要确定原始值 // https://github.com/ottypes/json0/blob/master/lib/json0.js#L237 od: 1, oi: 3, }; json.type.apply(draft, [op]); const nextState = finishDraft(draft); expect(nextState.a.b.c).toBe(3); expect(nextState.a).not.toBe(baseState.a); expect(nextState.a.b).not.toBe(baseState.a.b); expect(nextState.d).toBe(baseState.d); expect(nextState.d.e).toBe(baseState.d.e);

操作变换#

操作变换的应用场景主要是在协同编辑中,但是在非协同的情况下也有着大量应用。举个例子,在上传图片的时候,我们不应该将上传中的这个状态放置在undo栈中,而无论是将其作为不可撤销的操作,还是合并先前undo栈中已有的操作,都需要操作变换的实现。

我们可以理解b'=transform(a, b)的意思是,假设ab都是从相同的draft分支出来的,那么b'就是假设a已经应用了,此时b需要在a的基础上变换出b'才能直接应用,我们也可以理解为transform解决了a操作对b操作造成的影响,即维护因果关系。

在这里我们仍然测试最基本的insertdeleteretain的操作变换,其实我们可以看到,因果关系中位置的偏移是比较重要的,例如远程的b操作与即将应用的a操作都是删除操作,当b操作执行时a操作要删除的内容需要在b的操作结果后重新计算索引。

  
Copy
// packages/immer-ot-json/test/transform.test.ts // insert const base: Op[] = [{ p: [1] }]; const op: Op[] = [{ p: [0], li: 1 }]; const tf = type.transform(base, op, "left"); expect(tf).toEqual([{ p: [2] }]); // delete const base: Op[] = [{ p: [1] }]; const op: Op[] = [{ p: [0], ld: 1 }]; const tf = type.transform(base, op, "left"); expect(tf).toEqual([{ p: [0] }]); // retain const base: Op[] = [{ p: [1] }]; const op: Op[] = [{ p: [1, "key"], oi: "value" }]; const tf = type.transform(base, op, "left"); expect(tf).toEqual([{ p: [1] }]);

反转操作#

反转操作即invert方法,主要是为了实现undoredo等功能。前边我们也提到了,进行apply的时候很多操作是需要拿到原始值的,这些值在执行时并未实际校验,但是这样就可以直接在invert时直接转换,不需要snapshot来辅助计算值。

此外,invert支持的是批量的操作反转,在下面的例子中也可以看出接收的参数是Op[]。这里可以仔细思考一下,应用时数据操作正向的,而反转时的执行顺序是需要反转的,例如abc的三个操作,在invert后对应的应该是cba的反转op

  
Copy
// packages/immer-ot-json/test/invert.test.ts // insert const op: Op[] = [{ p: [0], li: 1 }]; const inverted = type.invert(op); expect(inverted).toEqual([{ p: [0], ld: 1 }]); // delete const op: Op[] = [{ p: [0], ld: 1 }]; const inverted = type.invert(op); expect(inverted).toEqual([{ p: [0], li: 1 }]); // retain const op: Op[] = [{ p: [1, "key"], oi: "value2", od: "value1" }]; const inverted = type.invert(op); expect(inverted).toEqual([{ p: [1, "key"], od: "value2", oi: "value1" }]);

批量应用#

批量应用操作是个非常麻烦的问题,OT-JSON是支持多个op同时应用的,然而在apply时数据是单个操作执行的。这个场景还是很常见的,例如在实现画板时,按住shift并且单击图形节点可以多选,然后执行删除操作,那么这就是一个同时基于draft的批量操作,理论上会存在因果关系。

在下面这个例子中,我们假设现在有4op,并且存在重复的索引值处理。那么在下面的例子中,我们理论上期待的结果应该是将1/2/3的值删除掉,即最终结果是[0, 4, 5, 6],然而最终得到的结果却是[0, 2, 4],这就是apply是独立执行,且没有处理op间的关联性引起的。

  
Copy
// packages/immer-ot-json/test/batch.test.ts const baseState = { a: { b: [0, 1, 2, 3, 4, 5, 6] as number[], }, }; const ops: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 2], ld: 2 }, { p: ["a", "b", 3], ld: 3 }, { p: ["a", "b", 3], ld: 3 }, ]; const nextState = type.apply(baseState, ops); expect(nextState.a.b).toEqual([0, 2, 4]);

那么由于先前提到过了,transform解决了a操作对b操作造成的影响,即维护因果关系。那么在这种情况下,就可以通过transform来处理操作之间的关联性问题,那么我们就可以直接尝试调用transform来处理这个问题。

然而transform的函数签名是transform(op1, op2, side),这就意味着我们需要两组操作之间进行变换,然而我们现在的ops是仅单组操作,因此我们需要考虑这部分应该如何结合。如果以空组变换ops组的话,返回的结果是[]是不正确的,因此我们需要尝试单op来处理。

因此,最开始我准备考虑使用将已经应用过的ops操作裁剪出来,然后将其直接影响的值通过transform来移除,这里还需要考虑是否需要将应用过的操作顺序反转再变换,而且这里也能够看到删除的值没有问题,且重复的操作也能够正确处理。

  
Copy
// packages/immer-ot-json/test/batch.test.ts const baseState = { a: { b: [0, 1, 2, 3, 4, 5, 6] as number[], }, }; const ops: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 2], ld: 2 }, { p: ["a", "b", 3], ld: 3 }, { p: ["a", "b", 3], ld: 3 }, ]; const tfOps = ops.map((op, index) => { const appliedOps = ops.slice(0, index); appliedOps.reverse(); const nextOps = type.transform([op], appliedOps, "left"); return nextOps[0]; }); expect(tfOps[0]).toEqual({ p: ["a", "b", 1], ld: 1 }); expect(tfOps[1]).toEqual({ p: ["a", "b", 1], ld: 2 }); expect(tfOps[2]).toEqual({ p: ["a", "b", 1], ld: 3 }); expect(tfOps[3]).toEqual(undefined); const nextState = type.apply(baseState, tfOps.filter(Boolean)); expect(nextState.a.b).toEqual([0, 4, 5, 6]);

在这里我们可以考虑将其简单封装一下,然后直接调用函数就可以得到最终的结果,这样就不需要将逻辑全部混杂在整个应用的过程中。这里可以对比一下DeltaOT实现,单次Deltaops是以相对位置处理的数据,而OT-JSON是绝对位置,因此在批量处理时需要进行转换。

  
Copy
// packages/immer-ot-json/test/batch.test.ts const ops: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 2], ld: 2 }, { p: ["a", "b", 3], ld: 3 }, { p: ["a", "b", 3], ld: 3 }, ]; const transformLocal = (op1: Op, base: Op[], dir: "left" | "right"): Op => { let transformedOp = op1; const reversed = [...base].reverse(); for (const op of reversed) { const [result] = type.transformComponent([], transformedOp, op, dir); if (!result) return result; transformedOp = result; } return transformedOp; }; ops.forEach((op, index) => { const appliedOps = ops.slice(0, index); const a1 = transformLocal(op, appliedOps, "left"); appliedOps.reverse(); const b1 = type.transform([op], appliedOps, "left"); expect(a1).toEqual(b1[0]); });

然而看起来上述的例子表现是没问题的,然而考虑到实际的应用场景,我们可以测试一下执行顺序的问题。下面的例子中,我们虽然仅仅是调整了ops的顺序,但最终却得到了错误的结果。

  
Copy
// packages/immer-ot-json/test/batch.test.ts const ops: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 3], ld: 3 }, { p: ["a", "b", 2], ld: 2 }, { p: ["a", "b", 3], ld: 3 }, ]; const tfOps = ops.map((op, index) => { const appliedOps = ops.slice(0, index); appliedOps.reverse(); const nextOps = type.transform([op], appliedOps, "left"); return nextOps[0]; }); expect(tfOps[0]).toEqual({ p: ["a", "b", 1], ld: 1 }); expect(tfOps[1]).toEqual({ p: ["a", "b", 2], ld: 3 }); expect(tfOps[2]).toEqual({ p: ["a", "b", 1], ld: 2 }); // 这里是存在问题的 希望得到的结果是 undefined expect(tfOps[3]).toEqual({ p: ["a", "b", 1], ld: 3 });

思考一下,我们究竟应该如何捋清楚这个因果关系问题,是不是可以考虑到这件事本身就应该是由a应用后,b发生了变更。那么在abcd这种情况下,应该是以a为基准,变换b/c/d,然后以b为基准,变换c/d,以此类推。

  
Copy
// packages/immer-ot-json/test/batch.test.ts const ops: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 3], ld: 3 }, { p: ["a", "b", 2], ld: 2 }, { p: ["a", "b", 3], ld: 3 }, ]; const copied: Op[] = [...ops]; const len = copied.length; for (let i = 0; i < len; i++) { // 这里是 copied 而不是 ops, 是应用后的操作 // 否则会导致实际轮转的操作变换产生错误 // 例如 [1,2,3] 下会出现 [1,1,undefined] 的情况 const base = copied[i]; for (let k = i + 1; k < len; k++) { const op = copied[k]; if (!op) continue; const nextOp = type.transformComponent([], op, base, "left"); copied[k] = nextOp[0]; } } expect(copied[0]).toEqual({ p: ["a", "b", 1], ld: 1 }); expect(copied[1]).toEqual({ p: ["a", "b", 2], ld: 3 }); expect(copied[2]).toEqual({ p: ["a", "b", 1], ld: 2 }); expect(copied[3]).toEqual(undefined);

这个问题的本质实际上是多个op组合的时候,其每个操作都是独立的绝对位置,并非会将其实现为相对的位置,例如在Delta中,compose操作是会计算为相对位置的。那么我们自然也可以将其封装为composeWith方法,这个方法在合并ops时,例如历史操作的合并会非常有用。

  
Copy
// packages/immer-ot-json/test/batch.test.ts const ops: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 3], ld: 3 }, { p: ["a", "b", 2], ld: 2 }, { p: ["a", "b", 3], ld: 3 }, ]; const composeWith = (base: Op[], ops: Op[]) => { const waiting: Op[] = []; for (const opa of ops) { let nextOp = opa; for (const opb of base) { nextOp = type.transformComponent([], nextOp, opb, "left")[0]; if (!nextOp) break; } nextOp && waiting.push(nextOp); } return base.concat(waiting.filter(Boolean)); }; const copied = ops.reduce((acc, op) => composeWith(acc, [op]), [] as Op[]); expect(copied[0]).toEqual({ p: ["a", "b", 1], ld: 1 }); expect(copied[1]).toEqual({ p: ["a", "b", 2], ld: 3 }); expect(copied[2]).toEqual({ p: ["a", "b", 1], ld: 2 }); expect(copied[3]).toEqual(undefined);

最后,我们还可以考虑到一个路径持有的场景,类似于我们实现富文本编辑器的Ref模块。举个例子,当上传图片时,loading状态时可能会有用户操作改变了原始路径,这个情况下当上传结束后将实际地址写入节点时,需要拿到最新的path

  
Copy
// packages/immer-ot-json/test/batch.test.ts const baseState = { a: { b: [0, 1, 2, 3, 4, 5, 6] as number[], }, }; // 持有且变换后的操作 目的是变换 path // 例如如果是 ld 的话 则应该先变换 [5,6] => [5,5] const refOps: Op[] = [ { p: ["a", "b", 5, "attrs"], od: "k", oi: "v" }, { p: ["a", "b", 6, "attrs"], od: "k1", oi: "v1" }, ]; const apply = (snapshot: typeof baseState, ops: Op[]) => { for (let i = 0, n = ops.length; i < n; ++i) { const tfOp = ops[i]; if (!tfOp) continue; // 变换出可直接应用的 ops 后, ref module 可以持有按序变换 for (let k = 0, n = refOps.length; k < n; ++k) { const refOp = refOps[k]; if (!refOp) continue; const [result] = type.transformComponent([], refOp, tfOp, "left"); refOps[k] = result; } } return type.apply(snapshot, ops); }; const tfOps: Op[] = [ { p: ["a", "b", 1], ld: 1 }, { p: ["a", "b", 2], ld: 3 }, { p: ["a", "b", 1], ld: 2 }, ]; const nextState = apply(baseState, tfOps); expect(nextState.a.b).toEqual([0, 4, 5, 6]); expect(refOps[0]).toEqual({ p: ["a", "b", 2, "attrs"], od: "k", oi: "v" }); expect(refOps[1]).toEqual({ p: ["a", "b", 3, "attrs"], od: "k1", oi: "v1" });

低代码场景#

在这里我们以简单的列表场景为示例,基于Immer以及OT-JSON实现基本的状态管理。列表的场景会是比较通用的实现,在这里我们会实现列表的增删、选区处理、历史操作等功能,这其中很多设计是参考slate的状态管理实现。

数据操作#

OT-JSON进行apply的时候,实际上执行的方案是逐个执行op。那么使用OT-JSON来管理状态的时候,会很容易思考出一个问题,如果更改了比较内部的数据状态,provider提供的value在最顶层的对象引用并不会发生改变,可能不会引起render

为什么说可能不引起render,如果我们在状态变更之后,直接引用的对象不发生改变,setState不会引起渲染行为。但是如果组件状态较多,其他的状态变更仍然会引起整个组件的状态刷新,例如下面的Child组件本身没有props发生改变,但count值的变化还是会导致函数组件执行。

  
Copy
// https://reactplayground.vercel.app/ import React, { useState, Fragment } from 'react'; const Child = () => { console.log("render child"); return <div>Child</div>; } const App = () => { const [count, setCount] = useState(0) const handleClick = () => { setCount(c => c + 1); } return ( <Fragment> <button onClick={handleClick}>{count}</button> <Child></Child> </Fragment> ); } export default App;

当然我们在不考虑其他状态变更的情况下,此时最顶层的对象引用不变,那么自然整个视图都不会刷新,因此我们必须要从变更的节点开始,以此向上的节点都需要变更引用值。下面的例子中,若C发生改变,则AC的引用需要变更,其他对象保持原始值,Immer恰好能够帮我们实现这个能力。

  
Copy
A / \ B C / \ D E

当然,在先前的例子中也可以发现,即使props的值不变,在最顶层的值变更之后还是会导致整个函数组件重新执行。在这种情况下是需要配合React.memo使用,以此来控制函数组件是否需要重新执行,将上面例子中的Child组件包装memo,就可以避免在count值变化时重新执行组件。

  
Copy
const Child = React.memo(() => { console.log("render child"); return <div>Child</div>; })

路径查找#

通常来说,在执行变更时我们需要得到要处理的目标path,特别是渲染后组件要操作本身时。在普通的变更中,我们可能更多的是依赖选区节点的表达,来得到要处理的目标节点。但是当我们想实现比较复杂的模块或者交互时,例如图片的异步上传等场景时,这可能并不足以让我们完成这些功能。

当我们使用React.memo来控制组件渲染后,其实会隐式地引入一个问题。例如此时我们有二级列表嵌套,以及内容节点[1,2],如果在[1]这个位置上插入新的节点,那么理论上原始的值应该变为[2,2],然而由于函数组件并未执行,其依然会保持原始的[1,2]

  
Copy
[ [0, 0, 0] [1, 1, 1(*)] ] // insert [1] [0,0,0] => [ [0, 0, 0] [0, 0, 0] [1, 1, 1(*)] ]

这里保持原始的[1,2]具体指的是,如果我们将path在渲染时传递给props,并且自定义memoequal函数并且传递path,那么低索引值的变更会导致大量节点的组件重新执行,性能会重新劣化。而如果不传递给props的话,在组件内部自然无法拿到节点渲染的path

在我们实现插件化的过程中,都是同一个插件来实现多个组件的渲染,这些组件都是同一种类型,却是渲染在不同path下的。因此通过插件来获取由该插件渲染出组件的path还是需要通过外层渲染状态来传递,上述的props传递方案自然不合适,因此这里我们通过WeakMap来实现path获取。

在这里我们通过两个WeakMap就可以实现findPath的功能,NODE_TO_INDEX用于存储节点与索引的映射关系,NODE_TO_PARENT用于存储节点与父节点的映射关系。通过这两个WeakMap就可以实现path的查找,每次更新节点时,较低索引的映射关系都可以更新。

  
Copy
// packages/immer-ot-json/src/components/list.tsx const children = useMemo(() => { const children: JSX.Element[] = []; const path = findPath(currentNode); for (let i = 0; i < nodes.length; ++i) { const p = path.concat(i); const n = nodes[i]; NODE_TO_INDEX.set(n, i); NODE_TO_PARENT.set(n, currentNode); children.push(<NodeModel node={n}></NodeModel>); } return children; }, [currentNode, nodes, selection]);

那么在实际查找path的时候,就可以从目标节点通过NODE_TO_PARENT开始不断查找父节点,直到找到根节点为止。而在这个查找过程中,就可以通过NODE_TO_INDEX来获取path,也就是说我们只需要通过层级级别的遍历就可以查找到path,而不需要遍历整个状态树。

  
Copy
// packages/immer-ot-json/src/utils/path.ts export const findPath = (node: Node | Editor) => { const path: number[] = []; let child = node; // eslint-disable-next-line no-constant-condition while (true) { if (child instanceof Editor) { return path; } const parent = NODE_TO_PARENT.get(child); if (isNil(parent)) { break; } const i = NODE_TO_INDEX.get(child); if (isNil(i)) { break; } path.unshift(i); child = parent as Node; } throw new Error("Unable To Find Path"); };

那么实际上我们也可以想到一个问题,我们更新path值时是需要渲染过程中执行的,也就是说我们想要获取最新的path,必须要在渲染完成后才可以。因此我们的整个调度过程时序必须要控制好,否则会导致获取不到最新的path,因此通常我们还需要在useEffect来分发渲染完成事件。

这里还需要关注的是,由于实际编辑器引擎是需要依赖useEffect本身的生命周期的,也就是必须要所有的子组件渲染完成后才触发父组件的effect副作用。因此在整个节点外层的Context级别渲染节点不能是React.lazy的实现,当然实际插件渲染的内容是可以懒加载的。

  
Copy
/** * 视图更新需要触发视图绘制完成事件 无依赖数组 * state -> parent -> node -> child ->| * effect <- parent <- node <- child <-| */ useEffect(() => { editor.logger.debug("OnPaint"); editor.state.set(EDITOR_STATE.PAINTING, false); Promise.resolve().then(() => { editor.event.trigger(EDITOR_EVENT.PAINT, {}); }); });

选区状态#

选区状态selection的模块同样依赖于React的状态维护,主要是将其作为Provider来使用。而选区表达本身的维护是依赖于path的,因此在点击节点时可以直接使用上述的findPath来写入选区状态即可。

  
Copy
// packages/immer-ot-json/src/components/node.tsx const onMouseDown = () => { const path = findPath(node); editor.selection.set(path); };

与上述的路径查找类似,我们并不会将节点本身的path作为props传递到节点上,因此节点需要得知本身是否处于选中状态同样需要设计。这里的设计需要考虑两部分,首先是全局的选区状态,这里直接使用Context提供value,其次是节点本身的状态,每个节点都需要独立的Context

全局的选区状态管理本身也分为两部分,全局的hooks是用于提供所有子组件的选区值,子组件中直接useContext即可,应用入口还需要使用编辑器本身的事件来管理Context的选区状态值。

  
Copy
// packages/immer-ot-json/src/hooks/use-selection.ts export const SelectionContext = React.createContext<Range | null>(null); export const useSelection = () => { return useContext(SelectionContext); }; // packages/immer-ot-json/src/components/app.tsx const onSelectionChange = useMemoFn((e: SelectionChangeEvent) => { const { current } = e; setSelection(current); }); useEffect(() => { editor.event.on(EVENTS.SELECTION_CHANGE, onSelectionChange); return () => { editor.event.off(EVENTS.SELECTION_CHANGE, onSelectionChange); }; }, [editor, onSelectionChange]);

单个组件的选中状态的设计比较有趣,首先考虑到选区状态只有两种,即选中/非选中状态,因此每个节点外层都应该放置一个Provider来管理状态。那么如果是一个深层次嵌套的组件选中状态,我们是需要改变最深层次的Provider值才可以改变选中状态。

那么这里就需要依赖最顶层selection的状态变更来触发最顶层的Provider变更,然后每一级的状态变更都需要重新执行函数组件,以此来按需地处理选中状态的变更以及render。也就是说,当深层次节点处于选中状态时,其沿着所有path低索引的节点都会处于选中状态。

这里其实仍然是需要配合React.memo来使用的,由于selected会作为props传递给子组件,因此在selected值变更时,子组件会重新执行。因此这里的变换是从顶层开始,每个选中状态由选中到非选中,或者是从非选中到选中状态,都会执行一次rerender

  
Copy
// packages/immer-ot-json/src/hooks/use-selected.ts export const SelectedContext = createContext<boolean>(false); export const useSelected = () => { return useContext(SelectedContext); }; // packages/immer-ot-json/src/components/list.tsx const children = useMemo(() => { const children: JSX.Element[] = []; const path = findPath(editor); for (let i = 0; i < nodes.length; ++i) { const p = path.concat(i); const n = nodes[i]; const isSelected = selection && isEqual(selection, p); children.push( <SelectedContext.Provider key={n.key} value={!!isSelected}> <NodeModel selected={!!isSelected} node={n}></NodeModel> </SelectedContext.Provider> ); } return children; }, [editor, nodes, selection]); // packages/immer-ot-json/src/components/node.tsx const isSelected = useSelected();

History#

History模块是与OT-JSON对于数据操作的部分结合比较紧密的模块,会深度应用transform进行操作变换,包括选区和数据的变换。此外invert方法也是必不可少的,逆转操作是undoredo的基础。

首先需要关注在何时处理undo,明显我们仅需要在apply操作时才需要处理栈数据,而在apply的时候还需要注意仅有用户触发的内容才需要处理。当操作源是History模块本身,甚至是来源与远程协同的数据时,自然是不应该将新的数据推入栈中的。

不要忘记了选区的记录,当触发了撤销之后,我们的选区也应该要回归到前一个状态,因此我们实际处理的实际有两个,在will apply的时机记录当前选区的值,在实际apply的时候再将最新的变更changes推入栈中。

  
Copy
// packages/immer-ot-json/src/editor/history.ts const { changes, source } = event; if (!changes.length || source === "history") { return void 0; } this.redoStack = []; let inverted = type.invert(changes); let undoRange = this.currentRange; this.undoStack.push({ ops: inverted, range: undoRange });

通常来说,我们不希望每次执行变更的时候都入栈,特别是一些高频操作,例如输入文本、拖拽节点。因此我们可以考虑在时间片之内的操作合并,将其规整为同一个undo ops,那么在这里就需要考虑如何将栈顶的ops与当前的changes合并,这其实就用到了之前我们的composeWith方法。

  
Copy
// packages/immer-ot-json/src/editor/history.ts if ( // 如果触发时间在 delay 时间片内 需要合并上一个记录 this.lastRecord + this.DELAY > timestamp && this.undoStack.length > 0 ) { const item = this.undoStack.pop(); if (item) { for (const base of item.ops) { for (let k = 0; k < inverted.length; k++) { const op = inverted[k]; if (!op) continue; const nextOp = type.transformComponent([], op, base, "left"); inverted[k] = nextOp[0]; } } inverted = type.compose(item.ops, inverted); undoRange = item.range; } } else { this.lastRecord = timestamp; }

undoredo的两个方法通常是需要配合使用的,在不执行用户态的操作时,通过history模块本身相互应用的changes是需要进行变换然后入另一个栈。即undo执行的changes需要再invert之后入redo栈,反之亦然。

  
Copy
// packages/immer-ot-json/src/editor/history.ts public undo() { if (!this.undoStack.length) return void 0; const item = this.undoStack.pop(); if (!item) return void 0; const inverted = type.invert(item.ops); this.redoStack.push({ ops: inverted, range: this.transformRange(item.range, inverted) }); this.lastRecord = 0; this.editor.state.apply(item.ops, "history"); this.restoreSelection(item); } public redo() { if (!this.redoStack.length) return void 0; const item = this.redoStack.pop(); if (!item) return void 0; const inverted = type.invert(item.ops); this.undoStack.push({ ops: inverted, range: this.transformRange(item.range, inverted) }); this.lastRecord = 0; this.editor.state.apply(item.ops, "history"); this.restoreSelection(item); }

针对于选区的变换同样也会依赖与transform,这里仅需要依赖path参数的改变即可。选区变换的原因是此前存储的range是基于未变更的值的,而此时出栈了就意味着已经执行了这些变更,因此需要变换来获取最新的选区。此外,恢复选区这里其实应该尽可能尝试恢复到变更附近的选区。

  
Copy
// packages/immer-ot-json/src/editor/history.ts protected transformRange(range: Range | null, changes: Op[]) { if (!range) return range; const nextSelOp = type.transform([{ p: range }], changes, "left"); return nextSelOp ? (nextSelOp[0].p as Range) : null; } protected restoreSelection(stackItem: StackItem) { if (stackItem.range) { this.editor.selection.set(stackItem.range); } }

实际上History这部分用到的操作变换远不止这些,在协同场景中我们需要考虑如何应对remote的操作,毕竟原则是我们仅能撤销自己的操作。还有诸如图片上传等场景是需要合并某undo栈的操作的,这里也需要操作变换来应对ops移动所带来的副作用,这部分我们放个基于Delta的实现。

  
Copy
/** * 将 mergeId 记录合并到 baseId 记录 * - 暂时仅支持合并 retain 操作, 需保证 baseId < mergeId * - 其他操作暂时没有场景, 可查阅 NOTE 的 History Merge 一节 * @param baseId * @param mergeId */ public mergeRecord(baseId: string, mergeId: string): boolean { const baseIndex = this.undoStack.findIndex(item => item.id.has(baseId)); const mergeIndex = this.undoStack.findIndex(item => item.id.has(mergeId)); if (baseIndex === -1 || mergeIndex === -1 || baseIndex >= mergeIndex) { return false; } const baseItem = this.undoStack[baseIndex]; const mergeItem = this.undoStack[mergeIndex]; let mergeDelta = mergeItem.delta; for (let i = mergeIndex - 1; i > baseIndex; i--) { const item = this.undoStack[i]; mergeDelta = item.delta.transform(mergeDelta); } this.undoStack[baseIndex] = { id: new Set([...baseItem.id, ...mergeItem.id]), // 这里是 merge.compose(base) 而不是相反 // 因为 undo 后的执行顺序是 merge -> base delta: mergeDelta.compose(baseItem.delta), range: baseItem.range, }; this.undoStack.splice(mergeIndex, 1); return true; } /** * 变换远程堆栈 * @param stack * @param delta */ protected transformStack(stack: StackItem[], delta: Delta) { let remoteDelta = delta; for (let i = stack.length - 1; i >= 0; i--) { const prevItem = stack[i]; stack[i] = { id: prevItem.id, delta: remoteDelta.transform(prevItem.delta, true), range: prevItem.range && this.transformRange(prevItem.range, remoteDelta), }; remoteDelta = prevItem.delta.transform(remoteDelta); if (!stack[i].delta.ops.length) { stack.splice(i, 1); } } }

总结#

在这里我们基于ImmerOT-JSON设计了一套应用状态管理方案,通过Immer的草稿机制简化不可变数据操作,结合OT-JSON的原子化操作与协同算法,实现原子化、可协同、高扩展的应用级状态管理方案,以及按需渲染的视图性能优化方案。整体来说,这个方案比较适用于嵌套数据结构的动态组合与状态管理。

在实际应用中,我们还是需要根据场景来选择合适的状态管理方案。在应用级别的场景中,例如富文本、画板、低代码中,顶层的架构设计还是非常重要的,所有的状态变更、节点类型都应该由这层架构设计扩展出来。而在我们的业务层面上,则更注重的是业务逻辑的功能实现,这部分其实就显得相对更自由一些,绝大部分实现都是面向过程的逻辑,更关注的则是代码的组织形式了。

每日一题#

参考#

原创作者: WindrunnerMax 转载于: https://www.cnblogs.com/WindrunnerMax/p/18842271
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值