实验五MATLAB的科学计算
实验五 MATLAB在高等数学中的科学计算 一、 实验目的 了解MATLAB在高等数学相关领域中的应用 二、 实验地点:A404 三、 实验日期: 四、 实验内容 (一)matlab在解析几何中的应用 1、利用Matlab描绘三维空间图形 解析几何教学中,图形是很重要的,空间概念的建立,各种曲面的研究,各种方程的建立都离不开图形,而空间图形既难画又费时。借助Matlab的绘图功能,可以快捷、准确地绘出图形,使教学变得形象、直观、生动,有利于学生观察三维空间图形的形状,掌握图形的性质。 例1:作出球面 x2+y2+z2=a2 和圆柱面x2+y2-ax=0 的交线—— 维维安尼( Viviani )曲线 此题通过联立球面方程x2+y2+z2=a2和圆柱面方程x2+y2-ax=0而得出维维安尼曲线的参数方程: x=acos2t y=acost * sint (0≤tb) b=2; t=0:pi/30:2*pi; n=length(t); y=20*cos(t); z=2*sin(t); x=0*ones(1,n); plot3(x,y,z) grid on pause(1) for i=0:pi/60:pi; x=y.*sin(i); y1=y.*cos(i); plot3(x,y1,z) pause(1) grid on hold on view(-20,60) end hold off 运行结果如图4 所示。本程序直观形象地演 示了椭圆绕 Z 轴旋转而形成椭球面的过程,生动地揭示了旋转椭球面的本质。 4、利用Matlab演示动点轨迹的形成 动点的轨迹问题是解析几何教学中的又一个难点,而描绘动点轨迹的形成过程是传统教学无法实现的。使用Matlab制作动画,可以轻易实现空间动点轨迹的形成过程。 例4: 一质点,沿着已知圆锥面的一条直母线自圆锥的顶点起,作等速直线运动,另一方面这一条母线在圆锥面上,过圆锥的顶点绕圆锥的轴(旋转轴)作等速的转动,这时质点在圆锥面上的轨迹叫做圆锥螺线。试建立圆锥螺线的方程。 此题取圆锥顶点为原点,轴线为Z轴,并设圆锥角为2α,旋转角速度为ω,直线速度为υ,动点的起始位置在原点,可得圆锥螺线的方程为 x=υtsinα*cosωt a=pi/60; u=2; v=3; x=v*sin(a)*cos(u.*t).*t; y=v*sin(a)*sin(u.*t).*t; z=v*t.*cos(a); comet3(x,y,z) (二)数值定积分求面积 例:用数值积分法求由y=-x2+115,y=0,x=0与x=10围成的图形面积,并讨论步长和积分方法对精度的影响。 用矩形法和梯形法分别求数值积分并作比较,步长的变化用循环语句实现。设x向量的长度为n,即将积分区间分为