matlab基于场景的算法有哪些,基于BOVW场景分类的matlab代码

该博客介绍了如何利用vlfeat库在MATLAB中进行图像分类。项目包括从创建词汇到分类的完整流程,如提取SIFT特征、构建BoVW模型、最近邻分类以及svm分类。实验结果以混淆矩阵和网页形式展示,涉及多种场景的图像分类。
摘要由CSDN通过智能技术生成

【实例简介】

运行前需要安装vlfeat,程序的入口为proj3.可自己修改训练样本路径。

【实例截图】

【核心代码】

8116d2b6-b82e-4f51-82a7-864cea9230ba

└── CODE

├── build_vocabulary.m

├── create_results_webpage.m

├── get_bags_of_sifts.m

├── get_image_paths.m

├── get_tiny_images.m

├── hs_err_pid184.log

├── nearest_neighbor_classify.m

├── proj3.m

├── results_webpage

│   ├── confusion_matrix.png

│   ├── index.html

│   └── thumbnails

│   ├── Bedroom_image_0039.jpg

│   ├── Bedroom_image_0082.jpg

│   ├── Bedroom_image_0083.jpg

│   ├── Bedroom_image_0094.jpg

│   ├── Bedroom_image_0119.jpg

│   ├── Bedroom_image_0134.jpg

│   ├── Bedroom_image_0141.jpg

│   ├── Coast_image_0009.jpg

│   ├── Coast_image_0067.jpg

│   ├── Coast_image_0068.jpg

│   ├── Coast_image_0075.jpg

│   ├── Coast_image_0119.jpg

│   ├── Coast_image_0193.jpg

│   ├── Coast_image_0228.jpg

│   ├── Forest_image_0035.jpg

│   ├── Forest_image_0040.jpg

│   ├── Forest_image_0101.jpg

│   ├── Forest_image_0102.jpg

│   ├── Forest_image_0114.jpg

│   ├── Forest_image_0117.jpg

│   ├── Forest_image_0250.jpg

│   ├── Forest_image_0308.jpg

│   ├── Highway_image_0015.jpg

│   ├── Highway_image_0032.jpg

│   ├── Highway_image_0044.jpg

│   ├── Highway_image_0146.jpg

│   ├── Highway_image_0204.jpg

│   ├── Highway_image_0238.jpg

│   ├── Industrial_image_0009.jpg

│   ├── Industrial_image_0026.jpg

│   ├── Industrial_image_0068.jpg

│   ├── Industrial_image_0101.jpg

│   ├── Industrial_image_0107.jpg

│   ├── Industrial_image_0137.jpg

│   ├── Industrial_image_0151.jpg

│   ├── Industrial_image_0152.jpg

│   ├── InsideCity_image_0008.jpg

│   ├── InsideCity_image_0037.jpg

│   ├── InsideCity_image_0093.jpg

│   ├── InsideCity_image_0130.jpg

│   ├── InsideCity_image_0138.jpg

│   ├── InsideCity_image_0144.jpg

│   ├── Kitchen_image_0010.jpg

│   ├── Kitchen_image_0017.jpg

│   ├── Kitchen_image_0050.jpg

│   ├── Kitchen_image_0074.jpg

│   ├── Kitchen_image_0098.jpg

│   ├── Kitchen_image_0115.jpg

│   ├── Kitchen_image_0175.jpg

│   ├── Kitchen_image_0208.jpg

│   ├── LivingRoom_image_0015.jpg

│   ├── LivingRoom_image_0028.jpg

│   ├── LivingRoom_image_0046.jpg

│   ├── LivingRoom_image_0062.jpg

│   ├── LivingRoom_image_0068.jpg

│   ├── LivingRoom_image_0095.jpg

│   ├── LivingRoom_image_0096.jpg

│   ├── LivingRoom_image_0117.jpg

│   ├── LivingRoom_image_0132.jpg

│   ├── LivingRoom_image_0212.jpg

│   ├── Mountain_image_0005.jpg

│   ├── Mountain_image_0008.jpg

│   ├── Mountain_image_0080.jpg

│   ├── Mountain_image_0085.jpg

│   ├── Mountain_image_0115.jpg

│   ├── Mountain_image_0123.jpg

│   ├── Mountain_image_0164.jpg

│   ├── Mountain_image_0263.jpg

│   ├── Office_image_0020.jpg

│   ├── Office_image_0023.jpg

│   ├── Office_image_0037.jpg

│   ├── Office_image_0043.jpg

│   ├── Office_image_0080.jpg

│   ├── Office_image_0090.jpg

│   ├── Office_image_0140.jpg

│   ├── Office_image_0147.jpg

│   ├── Office_image_0158.jpg

│   ├── Office_image_0181.jpg

│   ├── Office_image_0212.jpg

│   ├── OpenCountry_image_0004.jpg

│   ├── OpenCountry_image_0023.jpg

│   ├── OpenCountry_image_0052.jpg

│   ├── OpenCountry_image_0065.jpg

│   ├── OpenCountry_image_0077.jpg

│   ├── OpenCountry_image_0080.jpg

│   ├── OpenCountry_image_0113.jpg

│   ├── OpenCountry_image_0217.jpg

│   ├── OpenCountry_image_0282.jpg

│   ├── Store_image_0025.jpg

│   ├── Store_image_0057.jpg

│   ├── Store_image_0105.jpg

│   ├── Store_image_0117.jpg

│   ├── Store_image_0250.jpg

│   ├── Street_image_0013.jpg

│   ├── Street_image_0039.jpg

│   ├── Street_image_0078.jpg

│   ├── Street_image_0084.jpg

│   ├── Street_image_0102.jpg

│   ├── Street_image_0118.jpg

│   ├── Street_image_0143.jpg

│   ├── Street_image_0208.jpg

│   ├── Suburb_image_0012.jpg

│   ├── Suburb_image_0044.jpg

│   ├── Suburb_image_0082.jpg

│   ├── Suburb_image_0119.jpg

│   ├── Suburb_image_0143.jpg

│   ├── Suburb_image_0149.jpg

│   ├── Suburb_image_0170.jpg

│   ├── Suburb_image_0176.jpg

│   ├── TallBuilding_image_0016.jpg

│   ├── TallBuilding_image_0017.jpg

│   ├── TallBuilding_image_0032.jpg

│   ├── TallBuilding_image_0036.jpg

│   ├── TallBuilding_image_0052.jpg

│   ├── TallBuilding_image_0055.jpg

│   ├── TallBuilding_image_0087.jpg

│   ├── TallBuilding_image_0091.jpg

│   └── TallBuilding_image_0294.jpg

└── svm_classify.m

3 directories, 129 files

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值