pta中java编程题_多文件编程题

PTA上的多文件编程题要求学生按照题目描述完成任务,将代码放入src目录并打包提交。题目包括题干、满分设定、答题及判题压缩包,系统在Ubuntu 16.04环境下执行main.sh文件进行编译和评分。学生得分取决于生成的文件内容与标准答案的匹配度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多文件编程题与函数题相似,区别是裁判编写的判题程序可能涉及多个文件,因此不是写在题干里,而是以附件的形式供学生下载,方便学生调试。学生须按照题干上给出的要求编写程序,完成指定功能。学生的提交也可能包含多个文件,因此也不是直接从代码框提交,而是按照规则打包压缩后提交。系统将裁判的判题程序和学生的提交按照裁判指定的方式联合编译运行,并判定得分,将分数写在指定文件中。系统最后从文件中读取分数显示给学生。

出题步骤如下:

(1)给出题目满分的分值。

(2)如果有必要,则改写程序运行的内存限制和 CPU 核数限制;否则按默认值执行。

(3)给出题干,即要求完成的任务描述。

(4)上传题目压缩包,其中至少包含入口文件 main.sh 和答题文件夹 src/。其中 main.sh 给定了系统在 Ubuntu 16.04 运行环境中编译运行和判定分数的命令,这个文件将被学生看到;src/ 文件夹一般为空。学生应把自己的解答程序放在 src/ 文件夹里,压缩成 zip 格式的压缩包上传提交。

(5)上传判题压缩包,其中至少包含入口文件 main.sh 和答题文件夹 src/。其中 main.sh 给定了真正用于系统在 Ubuntu 16.04 运行环境中编译运行和判定分数的命令,这个文件学生看不到;src/ 文件夹内存放出题者的标准答案程序。

(6)点击“创建”生成新的多文件编程题。

系统将在 Ubuntu 16.04 运行环境中准备判题文件夹,用学生提交的 src/ 文件夹替换掉裁判的标准答案,执行 ./main.sh [score_file] 命令。其中 [score_file] 为得分文件名,这个文件名由系统自动生成。

[score_

### 关于 PTA 平台上的多文件编程题中涉及素数的题目及其解法 #### 1. **素数判定** 在 PTA多文件编程题中,素数是一个常见的考点。通常会涉及到如何高效地判断一个数是否为素数以及生成一定范围内的所有素数。 以下是 Python 中实现素数判定的一个通用方法: ```python def is_prime(n): """ 判断n是否为素数 """ if n <= 1: return False for i in range(2, int(n**0.5) + 1): # 只需检查到sqrt(n)[^1] if n % i == 0: return False return True ``` 此函数通过遍历从 `2` 到 `√n` 范围内的所有整数来检测是否存在因子[^1]。如果存在,则该数不是素数;否则就是素数。 --- #### 2. **埃拉托斯特尼筛法(Sieve of Eratosthenes)** 当需要找出某个范围内所有的素数时,可以采用更高效的算法——埃拉托斯特尼筛法。这种方法的时间复杂度接近 O(n log log n),非常适合处理大规模数据。 下面是基于 Python 实现的埃拉托斯特尼筛法代码示例: ```python def sieve_of_eratosthenes(limit): """ 使用埃拉托斯特尼筛法找到小于等于limit的所有素数 """ primes = [] is_prime = [True] * (limit + 1) p = 2 while p * p <= limit: # 当p*p超过上限时停止筛选 if is_prime[p]: for multiple in range(p * p, limit + 1, p): # 将p的倍数标记为False is_prime[multiple] = False p += 1 for num in range(2, limit + 1): # 收集剩余的True对应的索引作为素数 if is_prime[num]: primes.append(num) return primes ``` 这段代码利用布尔数组记录哪些数字可能是素数,并逐步排除掉那些已经被确认是非素数的数字[^2]。 --- #### 3. **PTA 上的具体应用实例** ##### (1)素数对猜想 在某些题目中可能会提到“素数对”的概念,即两个相邻素数之间的差值恰好为特定值的情况。例如,在 PTA 题目编号为 `1007` 的 “素数对猜想” 中,要求验证哥德巴赫猜想的一种特殊情况:任意偶数都可以表示成两奇素数之和的形式[^2]。 解决此类问题的关键在于先构建好所需区间内的全部素数列表,再逐一尝试配对组合即可满足条件。 ##### (2)分解质因数 另一类典型问题是将给定的大整数完全拆分为若干个较小的质因数乘积形式。这同样依赖于预先计算好的一系列候选素数集合来进行试探除法操作直至完成整个过程为止。 --- #### 4. **Java 版本中的实现思路** 对于 Java 用户而言,虽然语法略有差异,但核心逻辑依然保持一致。比如下面展示了一个简单的素数测试器版本: ```java public class PrimeChecker { public static boolean isPrime(int number){ if(number<=1)return false; for(int i=2;i*i<=number;i++){ if(number%i==0)return false; } return true; } public static void main(String[]args)throws Exception{ BufferedReader reader=new BufferedReader(new InputStreamReader(System.in)); System.out.print("Enter an integer:"); int input=Integer.parseInt(reader.readLine()); if(isPrime(input)){ System.out.println(input+" 是素数"); }else{ System.out.println(input+" 不是素数"); } } } ``` 这里采用了类似的平方根优化策略以减少不必要的迭代次数从而提高效率[^3]。 --- ### 结论 无论是单文件还是跨多个源码模块协作开发模式下,“素数”相关内容始终贯穿于各类竞赛型训练项目之中。掌握基本原理并灵活运用不同工具链所提供的特性将是成功解答这些挑战的重要保障之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值