溱潼中学2021高考成绩查询,2021届姜堰市溱潼中学高三数学期中测试.docx

PAGE

2021届姜堰市溱潼中学高三期中测试

数学试题(正题卷) 2010.11

注 意 事 项

考生在答题前请认真阅读本注意事项及各题答题要求

1.本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上.

3.作答各题时,必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效.

4.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚.

一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.

1.若集合,则a=

2.若(i为虚数单位),则实数m=

3.已知向量满足,则的夹角为

4.在中,角A、B、C所对的边分别是。若且则角C=__________

5.函数的最小正周期为________

6.设等差数列的前n项和为,若,则=

7.已知是上的减函数,那么实数的取值范围是

424.5xyO(第10题图)y=f(

4

2

4.5

x

y

O

(第10题图)

y=f(x)

l

9.已知函数的最大值____________

10.如图,函数的图象在点P处的切线是,

则= .

11.已知二次函数的值域为,则a+c的最小值为

12.设函数。若曲线在点(2,f(2))处与直线y=8

相切,则ab的值为

13.已知函数常数,若函数在上是增函数,

则a的取值范围是

14.已知是两个互相垂直的单位向量, 且,,,则对任意的正实数

,的最小值是   .

二、解答题:本大题共6小题,满分90分.请在答题卡指定区域内作答,答题时应写出文字说明、推理过程及演算步骤.

15.(本题满分14分)在⊿ABC中,已知AC=5,BC=1,

(1)求边AB的值;

(2)求sin(B-C)的值。

16.(本题满分14分)已知函数是偶函数。

(I)求的值; (II)若方程的取值范围。

17.(本题满分15分)已知(,∈R,为常数), 记=.

(1)求的单调增区间;

(2) 求图像的对称轴;

(3)若∈[0,]时,最大值为4,求的值.

18.(本题满分15分)已知等差数列满足:。数列的前n项和为

(1)求数列和的通项公式;

(2)令,试问:是否存在正整数n,使不等式成立?若存在,求出相应n的值;若不存在,请说明理由。

19.(本题满分16分)

如图所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱。

若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;

若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米量,可使总造价最低?

20.(本题满分16分)已知函数

当a=4,,求函数f(x)的最大值与最小值;

若,试求f(x)+3 >0 的解集;

当时,恒成立,求实数a的取值范围。

2010届姜堰市溱潼中学高三期中测试

一、填空题

1. 2

2.

3.

4. 。

5.

6.45

7.

8. .

9.

10. eq \f(9,8) .

11. 2

12. 96

13.

14.   .

二 解答题

15.(1)解法一:因为

所以,

那么.…

解法二: 由,可得,

由余弦定理,得,

所以.

(2)由余弦定理:, 得

所以

由,得,

所以. 14分

16.解:(I)由函数

(II)由,

故要使方程

17.解:(1)∵===2cos2+2cossin+=2sin(2+)++1;

当2kπ-≤2+≤2kπ+,即∈[kπ-,kπ+]()时函数y=f(x)单调递增;

(2)

(3)∵0≤≤,∴≤2+≤,-≤sin(2+)≤1,

∴=3+=4,即=1.

18.(1)设数列的公差为, 由,得,

得.

由数列的前和为可知,当时,,

当时,, 当时,得,

故数列的通项公式为,的通项公式为.

(2)假设存在正整数使不等式成立,即要满足,

由,,

所以数列单调减,数列单调增,

①当正整数时,,所以不成立;

②当正整数时,,

所以成立;

③当正整数时,,

所以不成立.

综上所述,存在正整数时,使不等式成立.

19.(1)设小网箱的长、宽分别为米、米,筛网总长

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值