signature=8978b2adc560717c90078028dc88eef9,MRI-based radiomic features in histological grading of br...

MRI-based radiomic features in histological grading of breast invasive ductal carcinoma

WU Pei-qi;LIU Zai-yi;LIANG Chang-hong;Department of Radiology,Guangdong General Hospital(Guangdong Academy of Medical Sciences);

Objective The histological grade of breast cancer is closely related with the treatment and prognosis of the malignancy,and radiomics plays a valuable role in the identification of its grade. This article aimed to investigate the values of the conventional parameters of breast MRI and breast MRI-based imaging features in the histological grading of breast invasive ductal carcinoma(IDC). Methods This retrospective study included 71 cases of breast cancer treated in our hospital from June 2015 to June 2016.We obtained the traditional quantitative parameters of MRI,including the apparent diffusion coefficient(ADC) and initial enhancement rate(IER),performed manual segmentation of the ADC and DCE maps,extracted the radiomic features and analyzed the differences in the radiomic signatures between low-and high-grade IDC. Using logistic regression analysis,we assessed the values of ADC and IER and the radiomic signatures of the ADC and DCE images in differentiating low-grade from high-grade IDC. Results The values of ADC,B_sum_ variance,L _ SRE and R _ RP were significantly lower(P 0.05) while those of B_uniform,B_GLN,L_energy,R_homogeneity2 and R _ IDN remarkably higher in the high-grade than in the lowgrade IDC patients(P 0. 05),but no statistically significant difference was observed in the IER value between the two groups(P 0.05). In differentiating high-grade from low-grade IDC,the ADC image-based radiomic signature model achieved a significantly higher AUC(0.858 [0.774-0.924]) than the ADC(0.709 [0.588-0.830]) and DCE model(0.691 [0.565-0.818]),and the former also manifested markedly higher accuracy,specificity,and rates of positive and negative prediction than the latter two. Conclusion ADC-and MRI-based radiomic features play a valuable role in differentiating high-grade from low-grade IDC,particularly the former,which could provide even more clinical information,while IER is of little value in this aspect.

CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值