《数值分析》上机实验报告
数值分析上机实验报告
《数值分析》上机实验报告
1.用Newton法求方程
X7-X4+14=0
在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1 理论依据:
设函数在有限区间[a,b]上二阶导数存在,且满足条件
令
故以1.9为起点
1.2 C语言程序原代码#include
#include
main()
{double x2,f,f1;
double x1=1.9; //取初值为 1.9
do
{x2=x1;
f=pow(x2,7)-28*pow(x2,4)+14;
f1=7*pow(x2,6)-4*28*pow(x2,3);
x1=x2-f/f1;}
while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数
printf("计算结果:x=%f\n",x1);}
1.3 运行结果:
1.4 MATLAB上机程序
function y=Newton(f,df,x0,eps,M)
d=0;
for k=1:M
if feval(df,x0)==0
d=2;break
else
x1=x0-feval(f,x0)/feval(df,x0);
end
e=abs(x1-x0);
x0=x1;
if e<=eps&&abs(feval(f,x1))<=eps
d=1;break
end
end
if d==1
y=x1;
elseif d==0
y='迭代M次失败';
else
y= '奇异'
end
function y=df(x)
y=7*x^6-28*4*x^3;
End
function y=f(x)
y=x^7-28*x^4+14;
End
>> x0=1.9;
>> eps=0.00001;
>> M=100;
>> x=Newton('f','df',x0,eps,M);
>> vpa(x,7)
1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。此程序的不足之处是,所要求解的方程必须满足上述定理的四个条件,但是第二和第四个条件在计算机上比较难以实现。
2.Newton迭代法是一个二阶收敛迭代式,他的几何意义Xi+1是Xi的切线与x轴的交点,故也称为切线法。它是平方收敛的,但它是局部收敛的,即要求初始值与方程的根充分接近,所以在计算过程中需要先确定初始值。
3.本题在理论依据部分,讨论了区间(0.1,1.9)两端点是否能作为Newton迭代的初值,结果发现0.1不满足条件,而1.9满足,能作为初值。另外,该程序简单,只有一个循环,且为顺序结构,故采用do-while循环。当然也可以选择for和while循环。
2.已知函数值如下表:
x12345f(x)001.09861231.38629441.6094378x678910f(x)1.79175951.94591012.0794452.19722462.3025851f’(x)f’(1)=1f’(10)=0.1试用三次样条插值求f(4.563)及f’(4.563)的近似值。
2.1 理论依据
这里 ,所以只要求出,就能得出插值函数S(x)。
求的方法为:
这里
最终归结为求解一个三对角阵的解。
用追赶法解三对角阵的方法如下:
,
综上可得求解方程Ax=d的算法:
#include
#include
void main()
{int i,j,m,n,k,p;
double q10,p10,s4,g4,x0,x1,g0=1,g9=0.1;;
double s[10][10];
double a[10],b[10],c[10],d[10],e[10],x[10],h[9],u[9],r[9];
double f[10]={0,01.0986123,1.3862944,1.6094378,
1.7917595,1.9459101,2.079445,2.1972246,2.3025851};
printf("请依次输入xi:\n");
for(i=0;i<=9;i++)
scanf("%lf",&e[i]); //求h矩阵
for(n=0;n<=8;n++)
h[n]=e[n+1]-e[n];
d[0]=6*((f[1]-f[0])/h[0]