北大2017计算机期末考试试题,科学网—北京大学2016-2017-1高等代数I期末考试试题 - 张祖锦的博文...

证明:实对称矩阵${A_n} =left[begin{matrix}

frac{1}{1}&                frac{1}{2}&                frac{1}{3}&                cdots&                frac{1}{n}\

frac{1}{2}&                frac{1}{2}&                frac{1}{3}&                cdots&                frac{1}{n}\

frac{1}{3}&                frac{1}{3}&                frac{1}{3}&                cdots&                frac{1}{n}\

vdots&                vdots&                vdots&                &                vdots\

frac{1}{n}&                frac{1}{n}&                frac{1}{n}&                cdots&                frac{1}{n}\

end{matrix}right]$的特征值都大于$0$,且小于等于$3+2sqrt{2}$.

首先注意到

[

A_n=left(begin{matrix}

b_1&                b_2&                b_3&                cdots&                b_n\

0&                b_2&                b_3&                cdots&                b_n\

vdots&                ddots&                b_3&                cdots&                b_n\

vdots&                &                ddots&                ddots&                vdots\

0&                cdots&                cdots&                0&                b_n\

end{matrix}right)left(begin{matrix}

b_1&                0&                cdots&                cdots&                0\

b_2&                b_2&                ddots&                &                vdots\

b_3&                b_3&                b_3&                ddots&                vdots\

vdots&                vdots&                vdots&                ddots&                0\

b_n&                b_n&                b_n&                cdots&                b_n\

end{matrix}right)=B^TB,

]

其中

[left{ begin{array}{l}

b_1^2 + b_2^2 + b_3^2 +  cdots  + b_n^2 = 1,\

b_2^2 + b_3^2 +  cdots  + b_n^2 = frac{1}{2},\

vdots \

b_n^2 = frac{1}{n}.

end{array} right.]

解得$b_k=frac1{sqrt{k(k+1)}},k=1,2,cdots,n-1$且$b_n=frac1{sqrt{n}}$.

由Rayleigh商定理可知只需证明

[

0leqfrac{x^TB^TBx}{x^Tx}=frac{(Bx)^TBx}{x^Tx}leq 3+2sqrt{2},

]

其中$x=(x_1,x_2,cdots,x_n)^T$.等价于证明

[

0leqsum_{k=1}^{n-1}{frac{left(x_1+x_2+cdots +x_kright)^2}{kleft(k+1right)}}+frac{left(x_1+x_2+cdots +x_nright)^2}{n}leq (3+2sqrt{2})sum_{k=1}^n{x_{k}^{2}}.

]

左边的不等式是显然的.下面证明右边不等式.事实上,由Cauchy-Schwarz不等式可知

[

left(frac{x_{1}^{2}}{a_1}+frac{x_{2}^{2}}{a_2}+cdots +frac{x_{k}^{2}}{a_k}right)left(a_1+a_2+cdots +a_kright)geqleft(x_1+x_2+cdots +x_kright)^2.

]

不等式可以改写为

[

frac{left(x_1+x_2+cdots +x_kright)^2}{kleft(k+1right)}leqsum_{i=1}^k{frac{a_1+a_2+cdots +a_k}{kleft(k+1right)a_i}x_{i}^{2}}.

]

对于$k=1,2,cdots,n-1$,构造类似的不等式,累加得

[

sum_{k=1}^{n-1}{frac{left(x_1+x_2+cdots +x_kright)^2}{kleft(k+1right)}}+frac{left(x_1+x_2+cdots +x_nright)^2}{n}leqsum_{k=1}^n{y_kx_{k}^{2}},

]

其中

[

y_k=sum_{i=k}^{n-1}{frac{a_1+a_2+cdots +a_i}{ileft(i+1right)a_k}}+frac{a_1+a_2+cdots +a_n}{na_k}.

]

只需证明数列$(a_1,a_2,cdots,a_n)$满足$y_kleq 3+2sqrt{2}$即可.我们取$a_k=sqrt{k}-sqrt{k-1}$,则$a_1+a_2+cdots+a_k=sqrt{k}$.此时,我们有

[

y_k=frac{1}{a_k}left(sum_{i=k}^{n-1}{frac{1}{left(i+1right)sqrt{i}}}+frac{1}{sqrt{n}}right).

]

注意到

begin{align*}

2left(frac{1}{sqrt{i}}-frac{1}{sqrt{i+1}}right)&=2frac{sqrt{i+1}-sqrt{i}}{sqrt{i}cdotsqrt{i+1}}=2frac{1}{sqrt{i}cdotsqrt{i+1}left(sqrt{i+1}+sqrt{i}right)}\

&geq 2frac{1}{sqrt{i}cdotsqrt{i+1}left(sqrt{i+1}+sqrt{i+1}right)}=frac{1}{left(i+1right)sqrt{i}}.

end{align*}

因此

begin{align*}

y_k&leqfrac{1}{a_k}left[sum_{i=k}^{n-1}{2left(frac{1}{sqrt{i}}-frac{1}{sqrt{i+1}}right)}+frac{1}{sqrt{n}}right]=frac{1}{a_k}left[2left(frac{1}{sqrt{k}}-frac{1}{sqrt{n}}right)+frac{1}{sqrt{n}}right]\

&leqfrac{2}{a_ksqrt{k}}=frac{2}{left(sqrt{k}-sqrt{k-1}right)sqrt{k}}=frac{2left(sqrt{k}+sqrt{k-1}right)}{sqrt{k}}\

&=2left(1+sqrt{1-frac{1}{k}}right)<4<3+2sqrt{2}.

end{align*}

转载本文请联系原作者获取授权,同时请注明本文来自张祖锦科学网博客。

链接地址:http://blog.sciencenet.cn/blog-287000-1029682.html

上一篇:华中科技大学2017年数学分析最后一道考研试题

下一篇:高教社学术出版的最新书目

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值