pytorch强化学习训练倒摆小车

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym

Hyper Parameters

BATCH_SIZE = 32
LR = 0.01 # learning rate
EPSILON = 0.9 # greedy policy 贪婪值
GAMMA = 0.9 # reward discount 无效值
TARGET_REPLACE_ITER = 100 # target update frequency
MEMORY_CAPACITY = 2000
env = gym.make(‘CartPole-v0’)
env = env.unwrapped
N_ACTIONS = env.action_space.n
N_STATES = env.observation_space.shape[0]
ENV_A_SHAPE = 0 if isinstance(env.action_space.sample(), int) else env.action_space.sample().shape # to confirm the shape

class Net(nn.Module):
def init(self, ):
super(Net, self).init()
self.fc1 = nn.Linear(N_STATES, 50)
self.fc1.weight.data.normal_(0, 0.1) # initialization
self.out = nn.Linear(50, N_ACTIONS)
self.out.weight.data.normal_(0, 0.1) # initialization

def forward(self, x):
    x = self.fc1(x)
    x = F.relu(x)
    actions_value = self.out(x)
    return actions_value

class DQN(object):
def init(self):
self.eval_net, self.target_net = Net(), Net()

    self.learn_step_counter = 0                                     # for target updating
    self.memory_counter = 0                                         # for storing memory
    self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2))     # initialize memory
    self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
    self.loss_func = nn.MSELoss()

def choose_action(self, x):
    x = torch.unsqueeze(torch.FloatTensor(x), 0)
    # input only one sample
    if np.random.uniform() < EPSILON:   # greedy
        actions_value = self.eval_net.forward(x)
        action = torch.max(actions_value, 1)[1].data.numpy()
        action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)  # return the argmax index
    else:   # random
        action = np.random.randint(0, N_ACTIONS)
        action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)
    return action

def store_transition(self, s, a, r, s_):
    transition = np.hstack((s, [a, r], s_))
    # replace the old memory with new memory
    index = self.memory_counter % MEMORY_CAPACITY
    self.memory[index, :] = transition
    self.memory_counter += 1

def learn(self):
    # target parameter update
    if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
        self.target_net.load_state_dict(self.eval_net.state_dict())
    self.learn_step_counter += 1

    # sample batch transitions
    sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
    b_memory = self.memory[sample_index, :]
    b_s = torch.FloatTensor(b_memory[:, :N_STATES])
    b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int))
    b_r = torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2])
    b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:])

    # q_eval w.r.t the action in experience
    q_eval = self.eval_net(b_s).gather(1, b_a)  # shape (batch, 1)
    q_next = self.target_net(b_s_).detach()     # detach from graph, don't backpropagate
    q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1)   # shape (batch, 1)
    loss = self.loss_func(q_eval, q_target)

    self.optimizer.zero_grad()
    loss.backward()
    self.optimizer.step()

dqn = DQN()

print(’\nCollecting experience…’)
for i_episode in range(400):
s = env.reset()
ep_r = 0
while True:
env.render()
a = dqn.choose_action(s)

    # take action
    s_, r, done, info = env.step(a)

    # modify the reward
    x, x_dot, theta, theta_dot = s_
    r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
    r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
    r = r1 + r2

    dqn.store_transition(s, a, r, s_)

    ep_r += r
    if dqn.memory_counter > MEMORY_CAPACITY:
        dqn.learn()
        if done:
            print('Ep: ', i_episode,
                  '| Ep_r: ', round(ep_r, 2))

    if done:
        break
    s = s_

if name == ‘main’:
pass

发布了178 篇原创文章 · 获赞 53 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览