2021年高考成绩 二本人员查询,2021年浙江高考理科二本一分一档成绩排名查询,第二批分数段人数查询...

2017年浙江高考理科二本一分一档成绩排名查询,第二批分数段人数查询2017年普通高校招生理科第二批提前批志愿填报成绩分段表参考

第二批本科院校在浙招生10万余名考生下周开始填志愿

二本学生选高校都有“恋家情结”

今年高考文理科第二批招生,有700余所院校可供考生选择,在浙计划招生10万余名。考生将在7月24~25日填报平行志愿。

浙江省高考文理科第二批(本科)的控制分数线是,文科452分,理科433分。

这两天分数线一出来,高校招生老师的“忙活季节”也来了。应本报约请来做视频访谈的每个招生老师,都有一个显著的共性:来去匆匆,电话不断。

第二批本科,是今年浙江省高考录取人数最多的批次,包括普通本科院校和独立学院。

相比去年,不少在第二批招生的省内高校今年又增加了招生计划名额,或者增设了招生新专业。

从分数线出来以后考生的咨询情况看,高校二批招生还真不只是学校一头热乎,从咨询量看,考生报来的分数看,今年浙江高校二批招生,很有可能稳中有升。

“这几年来,浙江各个学校二批招生分数线,处于相对稳定状态,起伏并不是太大,但高分段的考生,还是有逐年增长的趋势。”浙江工商大学招办主任说。

和浙江第一批考生相比,浙江考生在二批志愿填报上,更倾向本地高校,“恋家情结”依然很重。

本地高校有地域优势,得天独厚

孩子恋家,是天性。浙江工商大学招办主任吕跃良,做了十几年招生工作,他发现,在高考高分段,女生往往多于男生,所以“恋家”的情结,可能更加明显一点。

并且浙江本身就有很大的地理优势,在考生分数允许的情况下,家门口的学校多数是首选。

当然,考生的这个选择,也和批次有关系。

这几年,填报第一批次志愿时,考生还是偏重选学校,逐渐淡化地域,毕竟肯到省外稍微偏远一点的地区,考上211甚至985重点高校的可能性还是有的。

但第二批就不一样了,省外高校一般放在浙江的招生名额就不多。加上本地的家长、学生,对本土学校的情况,以及毕业生的去向,都更为了解,所以在第二批招生的浙江高校,无论普通本科院校还是独立学院,都有客观优势。

新设专业灵活度高,学校有活力

省内学校自身也非常上进。

浙江工商大学吕跃良说,这几年,浙江省在教育方面的投入非常大,各大学校的硬件设施都很不错。在师资方面,重点学科甚至逐步开始放眼全球招聘优秀师资,办学水平增长很快,这也是受考生青睐的重要原因。

更重要的是,这几年浙江高校,在根据社会发展形势,增设或者调整一些新的专业,以及大类方向上,动作灵活度比较高,每年都有不同的院校,拿出自己的强势资源,开出一些新专业和方向,让这个学校的构架看上去十分有活力。

吕跃良介绍说:“大部分新专业的开设,一般都是先在第二批招生。那么有新的专业开出来,就有扩招的需求。招生计划大起来,有些分数不是很稳的学生机会就更大。”

进了独立院校,有机会进本校

与此同时,不少放在第二批招生的独立学院,学生都有升入本校的机会。

比如浙江大学城市学院的“高教立交桥”政策,每年,城市学院都会在一年级学生中,选拔1%的优秀学生在大二进入浙大试读,试读期一年,达到浙大相关要求的学生,之后可获得浙江大学正式学籍。

除了直接进入对接的本校,不少浙江高校的独立学院,都有几张“国际牌”:与国外高校的合作办学项目,或者出境、到港澳台地区进行短期交流,考察学习项目等,也让考生充满希望。分数小计累计

64411

64312

64213

63914

63815

63216

63117

63018

62919

624110

622212

621113

620215

619217

617118

616220

614121

613425

612227

611330

610131

609435

608439

607140

分数小计累计

606444

605448

604654

603458

602260

601666

600470

599272

598375

597378

596785

595489

594594

593498

5922100

5916106

5906112

5894116

5884120

5875125

5865130

5858138

5849147

5838155

分数小计累计

58213168

58111179

58011190

57917207

57817224

57712236

57619255

57514269

57423292

57313305

57218323

57128351

57024375

56929404

56845449

56738487

56650537

56564601

56485686

563111797

562129926

5611201046

5601381184

5591681352

分数小计累计

5582021554

5572021756

5562472003

5552932296

5543032599

5533162915

5524123327

5513753702

5504284130

5494464576

5485055081

5474935574

5465466120

5454926612

5445447156

5435487704

5425548258

5415408798

5405839381

5395689949

53858010529

53756711096

53658111677

53557012247

分数小计累计

53459912846

53356813414

53260914023

53160214625

53058515210

52960815818

52857716395

52758316978

52659317571

52561218183

52462218805

52359519400

52261220012

52157620588

52059521183

51959121774

51854822322

51760922931

51662323554

51561124165

51456824733

51361025343

51262625969

51160426573

分数小计累计

51059727170

50955727727

50860328330

50760928939

50658929528

50557830106

50462330729

50353831267

50255731824

50156432388

50061833006

49969633702

49860034302

49756934871

49660135472

49561036082

49461536697

49361037307

49259637903

49160838511

49059639107

48960939716

48858740303

48761640919

分数小计累计

48664241561

48566842229

48461342842

48364243484

48260744091

48158944680

48067545355

47957245927

47859046517

47763247149

47663047779

47557648355

47458748942

47356849510

47263050140

47163950779

47065451433

46960952042

46858852630

46761053240

46657853818

46562654444

46458655030

46359155621

分数小计累计

46259756218

46162556843

46059857441

45960158042

45861558657

45761959276

45660459880

45559460474

45454961023

45358761610

45258462194

45158262776

45057863354

44957763931

44856664497

44757965076

44657665652

44556966221

44455966780

44355667336

44255067886

44156668452

44061469066

43957069636

分数小计累计

43860970245

43761070855

43654871403

43555371956

43457272528

43357173099

43256373662

43152574187

43052774714

42957275286

42853975825

42753276357

42656676923

42550977432

42455677988

42355278540

42252779067

42154279609

42055880167

41953180698

41850681204

41749681700

41648382183

41546682649

分数小计累计

41448483133

41350883641

41248584126

41147084596

41047285068

40950685574

40850386077

40748486561

40649287053

40547887531

40444487975

40347288447

40249988946

40153089476

40048189957

本研究聚焦于运用人工智能方法,特别是高斯过程回归与随机森林算法,对锂离子电池的健康状态进行预测分析。数据处理作为模型构建的基础环节,其质量直接影响最终预测结果的准确性。在此过程中,我们借助数值计算平台完成数据清洗、转换及特征构建等一系列操作。 数据预处理涵盖缺失值填补、异常点识别以及数据格式统一等步骤。通过调用相应函数,可读取原始数据集,检测并处理缺失信息,常用填补策略包括均值或中位数替代。针对异常值的判别,多采用基于统计分布的阈值方法,相关工具提供了便捷的实现途径。 特征工程旨在从原始变量中提取更具代表性的指标,以增强模型表达能力。对于电池健康预测问题,常涉及电压、电流与温度等监测参数,这些变量往往需经过标准化调整以消除量纲影响。此外,通过构造时序统计特征如滑动窗口均值,能够进一步丰富输入信息。 高斯过程回归作为一种概率型非参数模型,不仅能够输出预测值,还可提供相应的置信区间估计。该算法适用于样本规模有限且具有非线性特征的问题,因此在电池这类复杂系统的状态评估中表现良好。相关函数可用于模型拟合与预测。 随机森林通过集成多棵决策树来提升泛化性能,有效降低过拟合风险。训练过程中,每棵树独立学习数据特征;预测阶段则通过集体决策机制输出最终结果。相应的工具包支持该模型的快速构建与应用。 在数据科学领域,另一类常用编程环境同样提供丰富的数据处理与机器学习资源,包括高效的数据结构库、数值计算模块以及集成了多种算法的建模工具。两种平台可协同工作,例如将前者完成的计算结果导入后者进行深入分析与可视化。 整体而言,电池健康状态预测的典型流程包含数据载入、预处理、特征提取、模型训练、验证测试及最终状态评估等步骤。深入掌握这一完整链条及相关技术工具,不仅有助于优化电池管理系统,也为其他复杂设备的智能运维提供了方法参考。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值