Linux运行hadoop命令,将hadoop程序打成jar包,在linux下以命令行方式运行(例如单词计算程序)...

自定义Mapper

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

/**

* Mapper(指的是泛型)

* KEYIN 即k1 表示每一行的起始位置(偏移量offset)

* VALUEIN 即v1 表示每一行的文本内容

* KEYOUT 即k2 表示每一行中的每一个单词(可出现单词一样的行,在此还未进行分组)

* VALUEOUT 即v2 表示每一行中每个单词的出现次数,在这里,固定值为1

*

* 1.1从文件里读取内容:

* HELLO JAVA

* HELLO HADOOP

* 转换成<0,HEELO JAVA>,<11,HELLO HADOOP>形式 0和10表示每一行的偏移量从1开始,一个单词和空格都算一个偏移量

* 1.2将<0,HEELO JAVA>,<11,HELLO HADOOP>转换成形式

* 注意:hadoop不认java的基本类型

* JAVA HADOOP

* long LongWritable

* String Text

*/

public class MyMapper extends Mapper {

protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper.Context context)throws IOException, InterruptedException {

String[] splits = value.toString().split("\t");

for (String word : splits) {

context.write(new Text(word), new LongWritable(1L));

}

}

}

自定义Reducer

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

/**

* Reducer(指的是泛型)

* KEYIN 即k2 表示每一行中的每一个单词(可出现单词一样的行,在此还未进行分组)

* VALUEIN 即v2 表示每一行中每个单词的出现次数,在这里,固定值为1

* KEYOUT 即k3 表示整个文件中不同的单词(在此已经进行了分组)

* VALUEOUT 即v3 表示整个文件中不同单词的出现总次数

* 文件里的内容:

* HELLO JAVA

* HELLO HADOOP

* reduce方法接收的参数是map方法输出的结果:

* 经过reduce业务逻辑处理,输出后为:,,

*/

public class MyReducer extends Reducer {

protected void reduce(Text k2, Iterable v2s, Context context) throws IOException, InterruptedException {

long sum = 0L;

for (LongWritable v2 : v2s) {

sum += v2.get();

}

context.write(k2, new LongWritable(sum));

}

}

程序驱动

import java.net.URI;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountTest {

static String INPUT_PATH = "";

static String OUT_PATH = "";

public static void main(String[] args) throws Exception {

INPUT_PATH = args[0];

OUT_PATH = args[1];

Configuration conf = new Configuration();

//如果输出目录存在就删除

FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH),conf);

if(fileSystem.exists(new Path(OUT_PATH))){

fileSystem.delete(new Path(OUT_PATH),true);//第二个参数,true表示删除的是文件夹,false表示删除的是文件

}

//第二个参数是作业名称(随意)

Job job = new Job(conf, WordCountTest.class.getSimpleName());

/**

* ----------------------这句代码是用于打包运行的(必须要写)-------------------

*/

job.setJarByClass(WordCountTest.class);

//1.1 指定输入文件目录

FileInputFormat.setInputPaths(job, INPUT_PATH);

//1.2 指定自定义的Mapper类

job.setMapperClass(MyMapper.class);

//1.3分区

//1.4 排序、分组

//1.5 (可选)归约

//2.1 分配节点,不需要我们关心

//2.2 指定自定义的Reducer类

job.setReducerClass(MyReducer.class);

//指定Reducer输出的key和value类型 以下两句话不能省略,因为省略了mapper就没依据了

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(LongWritable.class);

//2.3 指定输出的路径

FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));

//把作业提交给JobTracker运行

job.waitForCompletion(true);

}

}

1.在eclipse项目中选中要被打包的程序入口,点击右键选择Export

2.点击java文件夹下的JARfile选项

0818b9ca8b590ca3270a3433284dd417.png

3.选择要被打成jar包的java文件以及jar包的输出目录

0818b9ca8b590ca3270a3433284dd417.png

4.点击下一步

0818b9ca8b590ca3270a3433284dd417.png

5.选择程序的入口,点击完成即可

0818b9ca8b590ca3270a3433284dd417.png

6.将jar包拷贝到linux环境,在linux的命令行中输入以下语句执行

hadoop jar jar.jar hdfs://hadoop:9000/hello hdfs://hadoop:9000/testOut

第一个路径是文件读取地址(即要被统计单词的文件)   第二个路径是文件输出路径(即统计单词后输出的文件)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值