conds matlab,Matlab随笔之插值与拟合(上)

1、拉格朗日插值

新建如下函数:

function y=lagrange(x0,y0,x)%拉格朗日插值函数%n 个节点数据以数组 x0, y0 输入(注意 Matlat 的数组下标从1开始),%m 个插值点以数组 x 输入,输出数组 y 为 m 个插值

n=length(x0);m=length(x);for i=1:m

z=x(i);

s=0.0;for k=1:n

p=1.0;for j=1:nif j~=k

p=p*(z-x0(j))/(x0(k)-x0(j));

end

end

s=p*y0(k)+s;

end

y(i)=s;

end

应用实例:

x0=1:1:20;

y0=x0.^2-20*x0-5;

x=1:0.1:20;

z=lagrange(x0,y0,x);

plot(x,z,‘:‘,x0,y0,‘ko‘);

运行结果:

20180923125226534354.png

2、分段线性插值

MATLAB现成的插值函数为interp1,其调用格式为:  yi= interp1(x,y,xi,‘method‘)

其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, ‘method‘表示采用的插值方法,包括:

‘method‘:是最近项插值;                                                              ‘linear‘:线性插值;(默认)

‘spline‘:逐段3次样条插值; (下面的三次样条插值会用到)             ‘cubic‘:保凹凸性3次插值

‘pchip‘:分段三次Hermite 插值。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为

12,9,9,1,0,18 ,24,28,27,25,20,18,15,13,

推测中午12点(即13点)时的温度.

x=0:2:24;

y=[12,9,9,10,18,24,28,27,25,20,18,15,13];

x1=0:0.5:24;

y1=interp1(x,y,x1,‘linear‘);

plot(x,y,‘bo‘,x1,y1,‘r:‘);

运行结果:

20180923125226967964.png

3、埃尔米特插值

如果要求插值函数不仅在节点处与函数同值,而且要求它与函数有相同的一阶、二阶甚至高阶导数值,这就是埃尔米特插值问题。

已知f(x)的n+1个节点的函数值f(xi)以及导数值f`(xi),可得一个至多n+1次的多项式H(x),即hermite插值多项式。

新建以下这个函数:

function y =hermite( x0,y0,y1,x )%埃尔米特插值多项式%x0为点横坐标%y0为函数值%y1为导数值%m个插值点用数组x输入

n=length(x0);m=length(x);for k=1:m

yy=0.0;for i=1:n

h=1.0;

a=0.0;for j=1:nif j~=i

h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2;

a=1/(x0(i)-x0(j))+a;

end

end

yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i));

end

y(k)=yy;

end

4、样条插值

所谓样条( Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。

数学上将具有一定光滑性的分段多项式称为样条函数。

在实际中最常用的是二次样条函数和三次样条函数:

二次样条函数插值

20180923125227329306.png

首先,我们注意到s2 (x)中含有 n+ 2 个特定常数,故应需要 n+ 2 个插值条件,因此,二次样条插值问题可分为两类:

(1)已知插值节点xi和相应的函数值 yi(i= 0,1,…,n) 以及端点 x0 (或 xn)处的导数值y‘0(或y‘n)

(2)已知插值节点xi和相应的导数值 y‘i(i= 0,1,…,n) 以及端点 x0 (或 xn)处的函数值y0 (或yn)

三次样条函数插值

20180923125227654514.png

由于 s3 (x)中含有n+ 3 个待定系数,故应需要 n+ 3 个插值条件,已知插值节点xi和相应的函数值 f(xi) = yi(i= 0,1,…,n) ,这里提供了 n+ 1 个条件,还需要 2 个边界条件。因此,三次样条插值问题可分为三类:

(1)s‘3 (a) = y‘0 ,s‘3 (b) = y‘n。由这种边界条件建立的样条插值函数称为 f(x) 的完备三次样条插值函数。

特别地,y0‘ = yn`= 0时,样条曲线在端点处呈水平状态。

如果 f‘ (x) 不知道,我们可以要求 s‘3 (x) 与 f‘ (x) 在端点处近似相等。这时以x0 , x1 , x2 , x3 为节点作一个三次 Newton 插值多项式 Na(x) ,以 xn, xn−1, xn−2, xn−3 作一个三次 Newton 插值多项式 Nb(x) ,要求s‘ (a) = N‘a(a), s‘ (b) = N‘b(b)

由这种边界条件建立的三次样条称为 f(x) 的 Lagrange 三次样条插值函数。

(2)s"3 (a) = y"0 ,s"3 (b) = y"3 。特别地 y"n= y"n= 0 时,称为自然边界条件。

(3)s‘3 ( a+ 0) = s‘3 ( b− 0), s"3 (a+ 0) = s"3 (b− 0) , (这里要求 s3 (a+ 0) =s3 (b− 0) )此条件称为周期条件。

Matlab实现(三次样条插值)

Matlab中的函数:

1、y=interp1(x0,y0,x,`spline`);%(spline改成linear,则变成线性插值)

2、y=spline(x0,y0,xi);%这个是根据己知的x,y数据,用样条函数插值出xi处的值。即由x,y的值计算出xi对应的函数值。

3、pp=spline(x0,y0);%是由根据己知的x,y数据,求出它的样条函数表达式,不过该表达式不是用矩阵直接表示,要求点x`的值,要用函数y`=ppval(pp,x`);

4、pp=csape(x,y,‘变界类型‘,‘边界值conds‘);生成各种边界条件的三次样条插值. 其中,(x,y)为数据向量,边界类型可为:

‘complete‘:给定边界一阶导数,即默认的边界条件,Lagrange边界条件

‘not-a-knot‘:非扭结条件,不用给边界值.

‘periodic‘:周期性边界条件,不用给边界值.

‘second‘:给定边界二阶导数.

‘variational‘:自然样条(边界二阶导数为[0,0]

边界值conds可用1x2矩阵表示,矩阵元素取值为1,2,此时,使用命令

pp=csape(x0,y0_ext,conds)

其中 y0_ext=[left, y0, right],这里 left 表示左边界的取值, right 表示右边界的取值。

conds(i)=j 的含义是给定端点 i的 j阶导数, 即 conds 的第一个元素表示左边界的条

件,第二个元素表示右边界的条件, conds=[2,1]表示左边界是二阶导数,右边界是一阶

导数,对应的值由 left 和 right 给出。

例子:

表 1

x0  3      5   7     9  11  12  13  14  15

y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6

要求用 Lagrange、分段线性和三次样条三种插值方法计算。

编程实现:

clear,clc

x0=[0,3,5,7,9,11,12,13,14,15];

y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6];

t=0:0.05:15;%拉格朗日插值函数

y1=lagrange(x0,y0,t);%调用编写的lagrange函数

dy1=(lagrange(x0,y0,0.0001)-lagrange(x0,y0,0))/0.0001%x=0处斜率

min1=min(lagrange(x0,y0,13:0.001:15))%13到15最小值

subplot(2,2,1);

plot(x0,y0,‘ro‘,t,y1);%画出曲线

title(‘拉格朗日插值函数‘);%分段线性插值

y2=interp1(x0,y0,t,‘spline‘);%注意区分spline与linear

Y2=interp1(x0,y0,t);%默认linear

dy2=(interp1(x0,y0,0.0001,‘spline‘)-interp1(x0,y0,0,‘spline‘))/0.0001%x=0处斜率

min2=min(interp1(x0,y0,13:0.001:15,‘spline‘))%13到15最小值

subplot(2,2,2);

plot(t,y2,‘b‘,t,Y2,‘r‘,x0,y0,‘ro‘);%画出曲线

title(‘分段线性插值‘);

legend(‘边条‘,‘线性‘);%显示图形图例%三次线条插值A

y3=spline(x0,y0,t);

dy3=(spline(x0,y0,0.0001)-spline(x0,y0,0))/0.0001%x=0处斜率

min3=min(spline(x0,y0,13:0.001:15))%13到15最小值

subplot(2,2,3);

plot(x0,y0,‘ro‘,t,y3);%画出曲线

title(‘三次线条插值A‘);%三次线条插值B

pp1=csape(x0,y0);%默认的边界条件,即给定边界一阶导数

pp2=csape(x0,y0,‘second‘);%给定边界二阶导数

y4=ppval(pp1,t);

Y4=ppval(pp2,t);

dy4=(ppval(pp1,0.0001)-ppval(pp1,0))/0.0001%x=0处斜率

min4=min(ppval(pp1,13:0.001:15))%13到15最小值

subplot(2,2,4);

plot(t,y4,‘b‘,t,Y4,‘r‘,x0,y0,‘ro‘);%画出曲线

title(‘三次线条插值B‘);

legend(‘一阶‘,‘二阶‘);

运行结果:

20180923125228038318.png

dy1 =

-55.2855

min1 =

0.9391

dy2 =

0.5023

min2 =

0.9828

dy3 =

0.5023

min3 =

0.9828

dy4 =

0.5007

min4 =

0.9851

综上,可以看出,拉格朗日插值函数根本不能应用,分段线性函数的光滑性较差,推荐三次样条插值。

同时,可以看出,interp1(x0,y0,’spline’)等价于spline(x0,y0)。

原文:http://www.cnblogs.com/vanker/p/4265031.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值