java 牛顿迭代算术平方根,牛顿迭代法求求一个数的算术平方根

产生背景:牛顿

迭代法(

Newton's method)又称为

牛顿-拉夫逊方法(Newton-Raphson method),它是

牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)

= 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) =

0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。

牛顿迭代公式

设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

牛顿迭代法示意图  军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B

= A操作),然后A 再前进占领新的位置,B再跟上……直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称之为迭代法。

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基该方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:

一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 (摘自百度百科:http://baike.baidu.com/view/643093.htm)

参考代码如下:

/**

只考虑非负实数的算术平方根,

如果要考虑完全,则自己再修改

*/

#include #include

using namespace std;

int main(){    double a ;    cin>>a ;    double x = 1 ;    while(x*x - a > 0.0000001 || x*x - a < -0.0000001)    {       x = (x + a/x)/2 ;    }    cout<< fabs(x) ;    return 0;}

利用牛顿迭代法求解整算术平方根一个常用学技巧,它基于牛顿-拉弗森方法,一种用于逼近方程根的迭代算法。对于求整算术平方根,我们通常需要找到满足 \(x^2 = n\) 的 \(x\)。 牛顿迭代法的基本思想是在已知某一点附近函近似的情况下,通过不断地更新这个点来逼近函的实际根。对于求平方根,我们的目标函是 \(f(x) = x^2 - n\),其中 \(n\) 是给定的正整。我们需要找到使得 \(f(x) = 0\) 的 \(x\) 的值。 ### 步骤描述: 1. **选择初始猜测** (\(x_0\)):可以选择 \(n\) 自身作为初始猜测,因为对于大多情况而言,这会给出一个比较接近实际平方根的起始点。 2. **迭代公式**:迭代步骤可以通过下面的公式完成: \[ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \] 对于平方根计算,这意味着: \[ x_{k+1} = x_k - \frac{x_k^2 - n}{2x_k} \] 这简化为: \[ x_{k+1} = \frac{x_k + \frac{n}{x_k}}{2} \] 3. **终止条件**:当两次连续的迭代结果之差小于预设的精度阈值时,停止迭代,将最后一次迭代的结果视为最终的平方根估计。 ### Python 实现: ```python def newton_sqrt(n, tolerance=1e-10): if n < 0: raise ValueError("Cannot compute the square root of a negative number.") # 初始猜测可以取 n 或者设置为 1 如果不知道从哪里开始 x_k = n while True: next_x = (x_k + n / x_k) / 2 if abs(next_x - x_k) < tolerance: return next_x x_k = next_x # 示例:求 16 的平方根 result = newton_sqrt(16) print(f"Square root of 16 is approximately {result}") ``` 上述代码段实现了牛顿迭代法来计算任意正整算术平方根,并提供了一个简单的错误处理机制来防止对负的处理。您可以调整 `tolerance` 参以达到所需的精确度级别。此外,这个函也可以轻松地应用于浮点的情况,只需稍作修改即可处理非整值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值