python中zeros用法_python中numpy.zeros(np.zeros)的使用方法

本文详细介绍了Python中numpy.zeros函数的使用,包括参数解析、数据类型选择及不同形状数组的创建。通过实例展示了如何创建浮点型、整型以及自定义数据类型的零数组。
部署运行你感兴趣的模型镜像

python 的 python中numpy.zeros(np.zeros)的使用方法

翻译:

用法:zeros(shape, dtype=float, order='C')

返回:返回来一个给定形状和类型的用0填充的数组;

参数:shape:形状

dtype:数据类型,可选参数,默认numpy.float64

dtype类型:

t ,位域,如t4代表4位

b,布尔值,true or false

i,整数,如i8(64位)

u,无符号整数,u8(64位)

f,浮点数,f8(64位)

c,浮点负数,

o,对象,

s,a,字符串,s24

u,unicode,u24

order:可选参数,c代表与c语言类似,行优先;F代表列优先

例子:

np.zeros(5)

array([ 0., 0., 0., 0., 0.])

np.zeros((5,), dtype=np.int)

array([0, 0, 0, 0, 0])

np.zeros((2, 1))

array([[ 0.],

[ 0.]])

s = (2,2)

np.zeros(s)

array([[ 0., 0.],

[ 0., 0.]])

np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype

array([(0, 0), (0, 0)],

dtype=[('x', '

########################################################

zeros(shape, dtype=float, order='C')

Return a new array of given shape and type, filled with zeros.

Parameters

----------

shape : int or sequence of ints

Shape of the new array, e.g., ``(2, 3)`` or ``2``.

dtype : data-type, optional

The desired data-type for the array, e.g., `numpy.int8`. Default is

`numpy.float64`.

order : {'C', 'F'}, optional

Whether to store multidimensional data in C- or Fortran-contiguous

(row- or column-wise) order in memory.

Returns

-------

out : ndarray

Array of zeros with the given shape, dtype, and order.

See Also

--------

zeros_like : Return an array of zeros with shape and type of input.

ones_like : Return an array of ones with shape and type of input.

empty_like : Return an empty array with shape and type of input.

ones : Return a new array setting values to one.

empty : Return a new uninitialized array.

Examples

--------

np.zeros(5)

array([ 0., 0., 0., 0., 0.])

np.zeros((5,), dtype=np.int)

array([0, 0, 0, 0, 0])

np.zeros((2, 1))

array([[ 0.],

[ 0.]])

s = (2,2)

np.zeros(s)

array([[ 0., 0.],

[ 0., 0.]])

np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype

array([(0, 0), (0, 0)],

dtype=[('x', '

Type: builtin_function_or_method

以上这篇python中numpy.zeros(np.zeros)的使用方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的与本文相关的镜像

PyTorch 2.6

PyTorch 2.6

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### PythonNumpy `zeros_like` 函数用法 Numpy 的 `zeros_like` 函数用于创建一个与给定数组具有相同形状和数据类型的全零数组。此功能对于初始化新数组非常有用,尤其是在不知道目标数组的确切尺寸时。 #### 基本语法 ```python import numpy as np result = np.zeros_like(a) ``` 其中 `a` 是输入数组,返回的结果是一个新的数组,其大小和类型都与 `a` 完全一致,但是所有的元素都被设置成了0。 #### 使用示例 下面是一些具体的例子来展示如何使用这个函数: ##### 创建一维全零数组 ```python import numpy as np original_array = np.array([1, 2, 3]) zero_array = np.zeros_like(original_array) print(zero_array) # 输出: [0 0 0] ``` ##### 处理二维或多维情况 当处理多维度的数据结构时,`zeros_like` 同样适用并保持原有的维度不变。 ```python matrix = np.array([[1, 2], [3, 4]]) new_matrix = np.zeros_like(matrix) print(new_matrix) # 输出: # [[0 0] # [0 0]] ``` ##### 自定义数据类型的支持 除了默认的浮点数外,还可以指定其他的数据类型作为输出数组的基础。 ```python custom_dtype_array = np.array([(1., 'hello'), (2., 'world')], dtype=[('number', float), ('text', object)]) all_zeros_custom_type = np.zeros_like(custom_dtype_array) print(all_zeros_custom_type) # 输出类似于: # [(0. , '') (0. , '')] ``` 通过上述实例可以看出,在不同场景下都可以方便地利用 `np.zeros_like()` 来快速构建所需格式的新数组[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值