matlab仿真项目心得,matlab仿真心得体会.doc

第 PAGE Page 9 页 / 共 NUMPAGES Pages 9 页

matlab仿真心得体会

篇一:matlab心得体会

matlab心得体会

班级:电气08-3班

姓名:张强

学号:24

matlab一个高级的距阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(m文件)后再一起运行。新版本的mATLAb语言是基于最为流行的c++语言基础上的,因此语法特征与c++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是mATLAb能够深入到科学研究及工程计算各个领域的重要原因。

在对升压-降压(boost-buck)式变换器电路理论分析的基础上,建立基于Simulink的升压-降压式变换器的仿真模型

直流斩波就是将直流电压变换成固定的或可调的直流电压,也称dc/dc变换。使用直流斩波技术,不仅可以实现调压的功能,而且还可以达到改善网侧谐波和提高功率因数的目的。升压-降压式变换电路即升降压斩波电路,主要应用于已具有直流电源需要调节直流电压的场合。

升压-降压式变换器电路

图如右图1-1所示。

设电路中电感L值很大,电容

c值也很大,使电感电流iL和电容

电压u0基本为恒值。

设计原理是:当可控开关V出于通态时,电源经V向电感L供电使其贮存能

量,此时电流为i1,方向如图1-1中所示。同时,电容c维持输出电压基本恒定并向负载R供电。此后,使V关断,电感L中贮存的能量向负载释放,电流为i2,方向如图1-1中所示。可见,负载电压极性为上负下正,与电源电压极性相反,因此该电路也称作反极性斩波电路。

稳定时,一个周期T内电感L两端电压uL对时间的积分为零,当V处于通态期间时,uL=E;而当V处于端态期间时,uL=-

出电压为u0。于是,EtonU0toff=,所以输

U=tontoffαE=βE

其中β=1-α,若改变导通比α,则输出电压既可以比电源电压高,也可以比电源电压低。当0

图1-2中给出了电源电流i1和负载电流

i2的波形,设两者的平均值分别为I1和I2,

当电流脉动足够小时,有I1ton

tI2=off

可得如下

toffI2=tonI1βI1=α

如果V、Vd为没有损耗的理想开关时,则EI1=U0I2,其输出功率和输入功率相等,可将其看作直流变压器。

在科学研究和工程应用中,为了克服一般语言对大量的数学运算,尤其当涉及矩阵运算时编制程序复杂、调试麻烦等困难,应运而生了mATLAb编程运算的软件,在自动控制、图像处理、语言处理、信号分析、振动理论、优化设计、时序分析和系统建模等领域都能得到很好的处理效果。而且在mATLAb中,可以直接在Simulink环境中运作的工具包很多,已覆盖通信、控制、信号处理、dSP、电力系统等诸多领域,所涉及的内容专业性极强。本文在对升压-降压式变换电路理论分析的基础上,利用mATLAb面向对象的设计思想和电气元件的仿真系统,建立了基于Simulink的升压-降压式变换电路的仿真模型,并对其进行了仿真研究。在对升压-降压式变换器电路电压或升或降时的工作情况进行仿真分析的基础上,验证了当脉冲发生器导通比α处在不同的数值时,将影响输出电压。进一步验证了mATLAb/Simulink仿真功能的强大。

通过matlab的学习,我了解到了电力电子变流技术在实际生活中的重要作用,并且通过实际运用matlab仿真软件建立电力电子功能电路模型实现功能的仿真,对常用的功率电力二极管、晶闸管、全控型器件可关断晶闸管、绝缘栅极双极型晶体管等电力电子器件在mATLAb中的实现以及电力电子中几种常用到的变换器与仿真实现过程有了实际的体验。

我更加深刻的了解到直流斩波电路的功能及其在现实中的运用。直流斩波也称作直流-直流变换器(dc/dcconverter),一般是指直接将直流电变为另一直流电的情况,而不包括直流-交流-直流的情况,纠正了以前的错误认识。而直流变换器主要分为降压、升压、升降压、cuk、Sepic和zeta电路,其中降压和升压是最基本的电路,可以帮助理解其他的电路。让我又一次认识到掌握了最基础的知识才是最根本的,复杂的知识都是在一个个基础知识的堆积,抓住了基础,再难的问题都可以拆解开来简化处理,都能够很快的掌握。

篇二:学习matlab的总结与感想

海南大学本科生2010—2011学年度第2学期

课程考查论文

学院(中心、所):信息科学技术学院专业:电子信息工程

研究方向:

仿真软件与应用实践1 MATLAB基础实验报告(代码总结心得)一、实验目的和要求: 1、掌握数组与矩阵的创建、矩阵运算与数组运算、基本元素群运算和向量与矩阵的特殊处理; 2、掌握二维图形、三维曲线和曲面图形的绘制以及标注; 二、实验内容: 1、利用“:”操作符和 linspace 函数生成数组 a=[0,6,12,18,24,30,36,42],并将数组 a 分别转化为 4*2 和 2*4 的矩阵。 2、在MATLAB中输入矩阵A=[■(3&6&8&1@-5&7&22&17@6&9&16&-12@15&13&-21&0)],并使用MATLAB回答以下问题: (1)创建一个有A中第2列到第4列所有元素组成的4*3数组B; (2)创建一个有A中第3行到第4行所有元素组成的2*4数组C; (3)创建一个有A中前两行和后三列所有元素组成的2*3数组D; (4)根据A利用单下标方法和双下标方法分别创建向量a=[-5 6 15],b=[6 8 1],并利用向量a和b生成矩阵E=[■(-5&6@6&8@15&1)];并利用“[]”删除矩阵A的第二行和第三列。 3、已知a=[■(1&3&4@5&12&44@7&8&27)],b=[■(-7&8&4@12&24&38@68&-5&3)],c=[1,0,8,3,6,2, 4,23,46,6]; (1)求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果,并观察分析运算结果; (2)求c中所有元素的平均值、最大值、中值,并将c中元素按从小到大顺序排列; (3)解释b(2:3,[1,3])的含义,并将生成的数组赋值给d。 4、已知A=[■(7&2&1&-2@9&15&3&-2@-2&-2&11&5@1&3&2&13)],用MATLAB求矩阵A的秩(rank)、行列式(determinant)、逆(inverse)、特征值及特征向量(eigenvalue and eigenvector)。 5、用MATLAB求方程组[■(7&2&1&-2@9&15&3&-2@-2&-2&11&3@1&3&2&13)]*[■(x_1@x_2@x_3@x_4 )]=[■(4@7@-1@0)]的解。 6、用不同线型和颜色在同一坐标内绘制曲线y=2e-0.5xsin(2πx)及其包络线,并为图形添加必要的图形标注。 7、在一个图形窗口中以子图形式同时绘制正弦、余弦、正切、余切曲线,并为图形添加必要的图形标注。 8、在xy平面内选择区域[-8,8]*[-8,8],绘制函数z=(sin√(x^2+y^2 ))/√(x^2+y^2 )的三种三维曲面图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值