开发 MCP Proxy(代理)也可以用 Solon AI MCP 哟!

MCP 有三种通讯方式:

通道说明备注
stdio本地进程内通讯现有
sse http远程 http 通讯现有
streamable http远程 http 通讯(MCP 官方刚通过决定,mcp-java-sdk 还没实现)

也可以按两大类分:

  • 本地进程间通讯
  • 远程通讯(比如给前端用,或远程接口用)。

目前看,行业内已经积累了大最 stdio mcp-server。而且还有提供代理转换的开源项目,比如:mcpo,mcp-proxy 之类的。如果是 Java,则可以使用 solon-ai-mcp 开发类似的代理。

<dependency>
    <groupId>org.noear</groupId>
    <artifactId>solon-ai-mcp</artifactId>
    <version>3.2.1-M3</version>
</dependency>

可以借用两种配置方式(也可以手动柜构建):

1、使用经典的 mcpServers 配置格式加载

这种配置格式,目前 mcp 代理很常用。stdio mcp-server 的各种项目也会提供这种配置。添加示例配置(或者找个 mcp-server 复制下),我们从 gitee 的一个项目上,复制了一份并命名为 mcp/mcpServers.case1.json

{
  "mcpServers": {
    "gitee": {
      "command": "mcp-gitee-ent",
      "env": {
        "GITEE_ENT_API_BASE": "https://api.gitee.com/enterprises",
        "GITEE_ENT_MCP_ACCESS_TOKEN": "<your mcp ent access token>",
      }
    }
  }
}

solon-ai-mcp 直接提供了解析此配置格式的快捷方法。以下是创建代理服务端示例:

@McpServerEndpoint(sseEndpoint = "/mcp/proxy/gitee")
public class McpServerTool implements ToolProvider {
    McpClientToolProvider toolProvider = McpClientToolProvider
                .fromMcpServers("classpath:mcp/mcpServers.case1.json")
                .get("gitee")

    @Override
    public Collection<FunctionTool> getTools() {
        return toolProvider.getTools();
    }
}

mcpServers 配置是支持多服务配置的,所以解析后会是个Map。在原理上,我们用 McpClientToolProvider 加载了 mcpServers,并作为工具提供给 McpServerEndpoint 输出,形成了代理效果。

2、使用 yaml 格式配置加载

这个规范需要参考对应 McpClientProperties 实体属性。在 app.yml 配置里添加 mcp-client 配置。

solon.ai:
  mcp:
    client:
      gitee:  # McpClientProperties 实体属性
        channel: "stdio"
        serverParameters:
          command: "mcp-gitee-ent"
          env: 
            GITEE_ENT_API_BASE: "https://api.gitee.com/enterprises"
            GITEE_ENT_MCP_ACCESS_TOKEN: "<your mcp ent access token>"
      

创建代理服务端

@McpServerEndpoint(sseEndpoint = "/mcp/proxy/gitee")
public class McpServerTool implements ToolProvider {
    @Inject("${solon.ai.mcp.client.gitee}") //通过配置,可直接注入
    McpClientToolProvider toolProvider;  

    @Override
    public Collection<FunctionTool> getTools() {
        return toolProvider.getTools();
    }
}

3、还可以反向代理

其实我们还可以把 sse mcp-server 代理成 stdio 的方式输出:

@McpServerEndpoint(channel = McpChannel.STDIO)
public class McpServerTool implements ToolProvider {
     McpClientToolProvider sseToolProvider = McpClientToolProvider.builder()
            .apiUrl("http://localhost:8081/mcp/sse")
            .build();

    @Override
    public Collection<FunctionTool> getTools() {
        return toolProvider.getTools();
    }
}

打包后,就可以通过 mcpServers 配置,被其它工具使用了:

{
  "mcpServers": {
    "demo1": {
      "command": "java",
      "args": ["-jar", "/demo-mcp-stdio/target/demo-mcp-stdio.jar"]
    }
  }
}

如果是 java ,还可以使用 solon-ai-mcp 。示例:

 McpClientToolProvider mcpClient = McpClientToolProvider.builder()
                .channel(McpChannel.STDIO) //表示使用 stdio
                .serverParameters(McpServerParameters.builder("java")
                        .args("-jar", "/demo-mcp-stdio/target/demo-mcp-stdio.jar")
                        .build())
                .build();

4、总结

开发 MCP Proxy(代理)也可以用 Solon AI MCP 哟!尤其是 Java 环境,我们同时支持 java8,java11,java17,java21,java24。

原创作者: noear 转载于: https://www.cnblogs.com/noear/p/18847691
内容概要:本文深入探讨了Spring Boot内嵌Tomcat的性能调优与高并发配置实战,重点解析了核心参数配置及其代码实现方式。通过application.yml配置和Java Config自定义Tomcat,优化线程池、连接数、超时时间及压缩功能,显著提升系统并发处理能力。文章还介绍了Spring Boot如何通过TomcatServletWebServerFactory初始化Tomcat实例,并利用Actuator与Grafana实现运行时监控与可视化,帮助开发者实时掌握服务状态。结合API网关实际案例,展示了优化后QPS从2000提升至8000的效果,验证了调优策略的有效性。最后展望了动态参数调整、响应式支持及Serverless适配等未来发展方向。; 适合人群:具备一定Java开发经验,熟悉Spring Boot和微服务架构,工作1-3年的后端研发人员或运维工程师;尤其适合需要进行高并发系统优化的技术人员。; 使用场景及目标:①用于微服务、Spring Cloud网关、RESTful API等高并发场景下的性能优化;②掌握Tomcat核心参数配置原理与Java级定制方法;③构建可观测性强的服务体系,实现性能监控与故障诊断;④为后续向响应式编程和Serverless架构演进提供技术储备。; 阅读建议:此资源以实战为导向,建议读者结合自身项目环境动手实践文中配置方案,重点关注Java Config的扩展机制与Actuator监控集成,并通过压测工具验证调优效果,深入理解每项参数对系统性能的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值