人工智能的核心技术是什么?
《人工智能标准化白皮书(2018)》
1 机器学习
机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、 神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机 怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识 结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是 现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用 这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及 算法的不同,机器学习存在不同的分类方法。
(1)根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
监督学习
监督学习是利用已标记的有限训练数据集,通过某种学习策略/方法建立一 个模型,实现对新数据/实例的标记(分类)/映射,最典型的监督学习算法包括 回归和分类。监督学习要求训练样本的分类标签已知,分类标签精确度越高,样 本越具有代表性,学习模型的准确度越高。监督学习在自然语言处理、信息检索、 文本挖掘、手写体辨识、垃圾邮件侦测等领域获得了广泛应用。
无监督学习
无监督学习是利用无标记的有限数据描述隐藏在未标记数据中的结构/规律, 最典型的非监督学习算法包括单类密度估计、单类数据降维、聚类等。无监督学 习不需要训练样本和人工标注数据,便于压缩数据存储、减少计算量、提升算法 速度,还可以避免正、负样本偏移引起的分类错误问题。主要用于经济预测、异 常检测、数据挖掘、图像处理、模式识别等领域,例如组织大型计算机集群、社 交网络分析、市场分割、天文数据分析等。
强化学习
强化学习是智能系统从环境到行为映射的学习,以使强化信号函数值最大。 由于外部环境提供的信息很少,强化学习系统必须靠自身的经历进行学习。强化 学习的目标是学习从环境状态到行为的映射,使得智能体选择的行为能够获得环 境最大的奖赏,使得外部环境对学习系统在某种意义下的评价为最佳。其在机器 人控制、无人驾驶、下棋、工业控制等领域获得成功应用。
(2)根据学习方法可以将机器学习分为传统机器学习和深度学习。
传统机器学习
传统机器学习从一些观测(训练)样本出发,试图发现不能通过原理分析获 得的规律,实现对未来数据行为或趋势的准确预测。相关算法包括逻辑回归、隐 马尔科夫方法、支持向量机方法、K 近邻方法、三层人工神经网络方法、Adaboost 算法、贝叶斯方法以及决策树方法等。传统机器学习平衡了学习结果的有效性与 学习模型的可解释性,为解决有限样本的学习问题提供了一种框架,主要用于有 限样本情况下的模式分类、回归分析、概率密度估计等。传统机器学习方法共同 的重要理论基础之一是统计学,在自然语言处理、语音识别、图像识别、信息检 索和生物信息等许多计算机领域获得了广泛应用。
深度学习
深度学习是建立深层结构模型的学习方法,典型的深度学习算法包括深度置 信网络、卷积神经网络、受限玻尔兹曼机和循环神经网络等。深度学习又称为深 度神经网络(指层数超过 3 层的神经网络)。深度学习作为机器学习研究中的一 个新兴领域,由 Hinton 等人于 2006 年提出。深度学习源于多层神经网络,其实 质是给出了一种将特征表示和学习合二为一的方式。深度学习的特点是放弃了可 解释性,单纯追求学习的有效性。经过多年的摸索尝试和研究,已经产生了诸多 深度神经网络的模型,其中卷积神经网络、循环神经网络是两类典型的模型。卷 积神经网络常被应用于空间性分布数据;循环神经网络在神经网络中引入了记忆 和反馈,常被应用于时间性分布数据。深度学习框架是进行深度学习的基础底层 框架,一般包含主流的神经网络算法模型,提供稳定的深度学习 API,支持训练 模型在服务器和 GPU、TPU 间的分布式学习,部分框架还具备在包括移动设备、云平台在内的多种平台上运行的移植能力,从而为深度学习算法带来前所未有的 运行速度和实用性。目前主流的开源算法框架有 TensorFlow、Caffe/Caffe2、CNTK、 MXNet、Paddle-paddle、Torch/PyTorch、Theano 等。
(3)此外,机器学习的常见算法还包括迁移学习、主动学习和演化学习等。
迁移学习
迁移学习是指当在某些领域无法取得足够多的数据进行模型训练时,利用另 一领域数据获得的关系进行的学习。迁移学习可以把已训练好的模型参数迁移到 新的模型指导新模型训练,可以更有效的学习底层规则、减少数据量。目前的迁 移学习技术主要在变量有限的小规模应用中使用,如基于传感器网络的定位,文 字分类和图像分类等。未来迁移学习将被广泛应用于解决更有挑战性的问题,如 视频分类、社交网络分析、逻辑推理等。
主动学习
主