7zip linux中文版官方下载,7-Zip for Linux和p7zip for Linux官方版本发布下载

当前,压缩软件 7-Zip 推出了 for Linux 官方版本,已提供 7z2101-linux-x64.tar.xz 包下载,同时用户也能下载到 p7zip for Linux(p7zip 是 Linux/Unix 的 7-Zip 命令行版本,由独立开发人员制作)。其中 7-Zip for Linux 的命令行参数与 p7zip 类似,供有一些地方不同而已,有需要的用户可去下载应用。

下载链接

7-Zip 官网:https://7-zip.org/

下载地址:https://7-zip.org/download.html

附:适用于 Linux 的官方 7-Zip 压缩软件发布,附介绍

热门压缩软件 7-Zip 终于推出了适用于 Linux 的首个版本。虽然 Linux 平台上可通过名为 p7zip 的 POSIX 移植软件支持 7-Zip 压缩文件格式,但它是由其他开发者维护的。由于 p7zip 的开发者已经连续 4-5 年没有继续维护他们的项目,7-Zip 的开发者 Igor Pavlov 决定基于最新的 7-Zip 源代码创建一个新的官方 Linux 版本。

301a154961fc9ab4c558af0b8ad09ff2.png

Pavlov 已经放出了适用于 AMD64、ARM64、x86 和 armhf 的 Linux 版 7-Zip,用户可以从以上下载地址中下载到。

7-Zip for Linux 的首个版本是作为控制台应用发布的,它的命令行参数与 p7zip 类似,但不完全相同:

9df8a9dad6a67285dad9ba133446b581.png

虽然 Pavlov 并没有发布源代码,不过他分享了一些如何编译的信息。由于他表示主要工作平台并非是 Linux,因此他希望其他开发者就编译程序的最佳方式提供建议。他表示:“这些适用于 Linux 的 7-Zip 安装包是通过 GCC 链接(编译)的,不过没有 -static 开关。已经编译的 32 位可执行文件(x86 和 armhf)在某些 arm64 和 amd64 系统中无法正常使用,这可能是因为缺少某些 .so 文件”。

Pavlov 还要求用户使用以下命令对 7-Zip for Linux 在不同发行版本上的性能进行基准测试。

./7zz b "-mm=*" "-mmt=*" -bt > bench.txt

然后,用户可以将他们的 bench.txt 报告作为评论上传到 7-Zip for Linux 的发布页面上,以便对其 bug 和潜在的性能提升进行审查。

相关主题

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值