python最长回文子串动态规划_最长回文子串问题

本文介绍了四种解决Python中最长回文子串问题的方法,包括暴力求解、动态规划、中心扩展法和Manacher算法。动态规划法通过二维数组降低时间复杂度至O(n^2),而Manacher算法则进一步优化到O(n),实现空间复杂度为O(1)的解决方案。
摘要由CSDN通过智能技术生成

问题描述

回文串是指aba、abba、cccbccc、aaaa这种左右对称的字符串。

输入一个字符串Str,输出Str里最长回文子串的长度。

方法一:暴力求解

遍历每一个子串,再判断这个子串是不是回文串,最后判断这个串是不是最长的回文子串。

遍历子串的复杂度是O(n^2),判断是不是回文串的复杂度是O(n),所以这个算法的复杂度是O(n^3)。

方法二:动态规划法

用一个二维的数组ai来表示从第i位到第j位的子串是不是回文串,在判断从i到j的子串是不是回文串时,可以先看i+1到j-1是不是回文串,再判断i位和j位是不是相同。这个算法中,遍历子串的复杂度仍然是O(n^2),但是判断是不是回文串的复杂度降到了O(1),所以这个算法的复杂度是O(n^2)。但是这个算法占据了O(n^2)的空间。

方法三:中心扩展法

顾名思义,任何一个回文串都有一个对称轴,从这个中心的位置开始,向两边扩展,可以得到以此为中心的最长回文串。但是要注意,这个对称轴的位置,可能是一个字符,也可能是两个字符中间。遍历对称轴的位置,复杂度是O(n),找到以此对称轴为中心的最长回文串,其复杂度是O(n),所以此算法的复杂度是O(n^2)。这个算法比动态规划好的地方是其空间复杂度只有O(1)。

#include

#include

using namespace std;

#define LEN 1000

int main(){

char str[LEN];

cin>>str;

int len=strlen(str);

int maxlen=0,mx;

for(int i=0;i

mx=1;

for(int j=1;(i-j>=0)&&(i+j

if(str[i-j]==str[i+j])

mx+=2;

else break;

}

maxlen=maxlen>mx?maxlen:mx;

}

for(int i=0;i

mx=0;

for(int j=0;(i-j>=0)&&(i+j+1

if(str[i-j]==str[i+j+1])

mx+=2;

else break;

}

maxlen=maxlen>mx?maxlen:mx;

}

cout<

return 0;

}

方法四:manacher算法

预处理

在字符串的开始加上一个'$'符,然后在每个字符中间插上一个'#'。比如,字符串ss='abac',处理之后是str='$#a#b#a#c#'。接下来的计算针对处理后的字符串。

len数组

然后定义一个len数组,len[i]表示的是以str[i]为中心的最长回文串的半径。

仍以上面的字符为例。str='$#a#b#a#c#',以str[0]为中心的最长回文串是'$',其半径是1;以str[4]为中心的最长回文串是'#a#b#a#',其半径是4;len数组为{1,1,2,1,4,1,2,1,2,1}。可以发现,len[i]-1的值,就是原字符串ss中对应的回文串的长度(以#为中心的是偶长度的回文串,以字符为中心的是奇长度的回文串)。

计算len数组

算法的关键在于在计算len数组时,可以利用前面的结果进行优化。

引入变量maxright表示当前访问到的所有回文子串,所能触及的最右一个字符的位置;同时记录maxright所对应的回文串的对称轴的位置,记为pos。

复杂度分析

考虑p的值的变化,在计算的过程中,p只会增加不会减少,当p增加到strlen(str)时,每个位置的len数组的值都可以立即计算得出。所以算法的复杂度是O(n)。

#include

#include

#include

using namespace std;

#define N 100004

string str,ss;

int len[2*N+1];

int main()

{

cin>>ss;

str="$#";

for(unsigned int i=0;i

{

str+=ss[i];

str+="#";

}

// cout<

int pos=0,p=0,j=0;

len[0]=1;

for(unsigned int i=1;i

{

j=2*pos-i;

if(p>i)

len[i]=(len[j]>p-i)?(p-i):(len[j]);

else

len[i]=1;

while(i+len[i]=0&&str[i+len[i]]==str[i-len[i]])

len[i]++;

if(i+len[i]>=p)

{

pos=i;

p=i+len[i];

}

}

int ans=0;

for(int i=0;i

{

// cout<

ans=(len[i]-1>=ans)?len[i]-1:ans;

}

// cout<

cout<

return 0;

}

最长回文子串问题可以使用动态规划来解决。 动态规划的思路是利用已知的子问题的解来求解更大规模的问题。对于回文串,我们可以定义一个二维数组 dp[i][j],表示字符串从位置 i 到 j 是否是回文串。那么,如果 dp[i][j] = true,则表示从 i 到 j 的字符串回文串。 根据回文串的定义,我们可以得到递推关系式: - 如果 s[i] == s[j],并且 s[i+1] 到 s[j-1] 是一个回文串,那么 s[i] 到 s[j] 也是一个回文串。即:如果 s[i] == s[j] 并且 j - i <= 2 或者 dp[i+1][j-1] = true,则 dp[i][j] = true。 - 如果 s[i] != s[j],那么 s[i] 到 s[j] 不是一个回文串。即:如果 s[i] != s[j],则 dp[i][j] = false。 根据递推关系式,我们可以使用动态规划的方式求解最长回文子串: 1. 初始化二维数组 dp 的对角线上的元素为 true,表示单个字符一定是回文串。 2. 从字符串的末尾开始遍历,从右下角开始计算 dp 数组的其他位置。 3. 根据递推关系式计算 dp 数组的其他位置。 4. 在计算过程记录最长回文子串的起始位置和长度。 5. 根据最长回文子串的起始位置和长度截取原始字符串,即可得到最长回文子串。 下面是使用动态规划求解最长回文子串的代码示例(使用 Python 实现): ```python def longestPalindrome(s): n = len(s) dp = [[False] * n for _ in range(n)] start = 0 max_len = 1 # 初始化对角线 for i in range(n): dp[i][i] = True # 从右下角开始计算 dp 数组 for i in range(n-1, -1, -1): for j in range(i+1, n): if s[i] == s[j] and (j - i <= 2 or dp[i+1][j-1]): dp[i][j] = True if j - i + 1 > max_len: max_len = j - i + 1 start = i return s[start:start+max_len] ``` 这样,调用 `longestPalindrome` 函数并传入一个字符串,即可得到该字符串最长回文子串
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值