你也需要蒙特卡罗方法——提高应用水平的若干技巧.pdf
收稿日期 月 !% 日
文章编号:$""! ’ $(##(!""))"! ’ "*#( ’ $!
你也需要蒙特卡罗方法
———提高应用水平的若干技巧
杨自强
(中国科学院数学与系统科学研究院 计算数学与科学工程计算研究所,北京,$"""%")
摘要:本文是《你也需要蒙特卡罗方法》中的第二篇。文中讨论提高应用水平的一些技巧,涉及模
拟模型的选取,提高计算速度或降低抽样方差的一些方法,诸如重要抽样、相关抽样、对偶抽样和
分层抽样等。还讨论了模拟中所需的抽样次数的确定和模拟结果的精度评估等实用问题。
关键词:统计模拟;加速方法;降低方差;蒲丰投针;重要抽样;对偶抽样;分层抽样
中图分类号:+!$!;+!,! 文献标识码:-
!"# $%%& ’"()% *+,-" ’%)."&———/%0.(12#%3 4", 5(.+(01(6 788-10+)1"(3
.-/0 12
!
32456
( 758929:; <= ><25?:9492<54@ A49B;25492C8 45D EC2;592=2C F G5625;;H256 >
A49B;I492C8 45D EJ89;I EC2;5C;8,>B25;8; -C4D;IJ <= EC2;5C;8,K;2L256,$"""%",>B254)
793),+0):MB28 28 9B; 8;C<5D ?4?;H =4H@)I;9B
4??@2C492<58 <= A> 4H; D28C:88;DN MB;8; 9;CB523:;8 C<5C;H5 O29B 9< CB<<8; 4 6<
8
2C P4H249;8 45D 89H492=2;D 84I?@256 ;9CN -@8
;P4@:492<5 <= 4CC:H4CJ <= 82I:@49;D H;8:@9 4H; D28C:88;DN
:%;
?@256;45929B;92; P4H249;8;89H492=2;D 84I?@256
" 引言
本文是《你也需要蒙特卡罗方法》中的第二篇,前篇[$]通过几个例子和通俗的语言简要介
绍了蒙特卡罗(A>)模拟方法的基本概念和应用。目的是引起读者对 A> 方法的兴趣,尝试着
把 A> 方法用在自己的研究工作中。本篇将进一步讨论提高 A> 方法应用水平的一些技巧,
其目的是帮助读者更得心应手地使用这个工具。内容涉及
·A> 方法的结果精度分析和所需抽样次数的确定;
·模型的评价与选取;
·提高 A> 方法效率(降低方差)的一些方法。
本文仍侧重应用,并尽可能通过实例说明问题。欲更深入了解 A> 的读者可参考[,—)]。
!"") 年 * 月
第 !) 卷 第 ! 期
数理统计与管理
-??@2C492<5 <= E9492892C8 45D A4546;I;59
A4HT ,!"")
U
! 蒙特卡罗方法的结果精度分析与所需抽样次数的确定
!# ! $% 方法结果的统计特性
!" 方法在求解一个问题时,总是需要根据问题的要求构造一个用于求解的概率统计模
型(简称概型或模型),常见的模型把问题的解化为一个随机变量 #(或随机向量,随机过程的
一个复杂函数)的某个参数
!
的估计问题。要估计的参数
!
通常设定为 # 的数学期望(亦称
平均值,即 $(#)&
!
)。按统计学惯例,
!
可用 # 的样本(#
!
,#
’
,?,#
%
)的平均值来估计,即
&
!
& # &
!
%
"
%
’ !
#
’
(!( !)
其后的工作便是产生(),!)区间上的均匀随机数并变换为随机变量 # 的抽样值( 见前篇
[!]的第 ’ 节),最后由(!,!)式算出问题的近似解,
由于解依赖于随机变量的抽样,所以它也具有随机性,且其均值与方差分别是
$(#)&
!
, ()*(#)&
!
%
"
’

被折叠的 条评论
为什么被折叠?



