android10 p20pro,客观数据告诉你华为p20 pro的拍照到底什么水平

本文通过客观数据对比华为P20Pro与iPhone8的拍照效果,发现P20Pro在理想画质下分辨率稍高,但iPhone8在宽容度上更优。在低光环境下,由于P20Pro缺乏光学防抖,高ISO导致画质下降,而iPhone8在暗部细节上表现出色。两者在不同场景下各有优势,总体表现接近。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

客观数据告诉你华为p20 pro的拍照到底什么水平

2018-05-23 19:03:20

19点赞

16收藏

40评论

前言

本文以gsmarena提供的照片作云测评,相较于dxo的随手拍更为严谨,选取的对比对象是iphone8,一是我自己在用,二是价钱相近。直入主题

注:p20 pro全程不开ai 超级夜景等功能,同理iphone8不开hdrfc409b70dbad6b9d6eb9af1d1892f562.png华为 HUAWEI P20 Pro 全面屏徕卡三摄 6GB +64GB 宝石蓝 全网通版 移动联通电信4G手机 双卡双待4988元京东去购买fe2ba94857b1a2df5a2ddc6827fb5754.pngApple iPhone 8 (A1863) 64GB 深空灰色 移动联通电信4G手机4899元京东去购买

理想情况下的标版测试对比

根据gsmarena的说明,标版测试是手动选择最低iso进行拍摄多张,再挑选其中表现最好的照片:

fe14be3809bcb6dcf7891517f655bca7.png

100%放大图片可以看到,p20的分辨率大概在32-28中间,而iphone8在28左右,在分辨率上,p20略略好一点

8095ecc6ef700ad212ca75421ccb0a09.png

100%放大图片可以看到,p20最多能分辨15跟16所对应的格子,iphone8最多能分辨16跟17所对应的格子,虽然p20的表现较差跟曝光度较低有关,但造成曝光较低的原因是p20的测光系统问题,所以暗部细节仍算iphone8稍好

af43deeb60ddb99897fd40416f4abc01.png

亮部细节都没有任何过曝问题。

总结一下,在标版测试部分,p20在分辨率上略好那么一点点,iphone8在宽容度上略好那么一点点。

明亮环境下的物品测试

这部分跟上部分一样,都是在最低iso下最佳画质的呈现

03e8122d5506a6877e6e10d99a593389.png

数毛党登场,看笔刷部分,p20的分辨率确实是会高那么一丢丢。再看金属部分,不约而同地都过曝了,亮部宽容度都不行,不过p20紫边严重,这里有两种可能性:一是iphone本来就没有紫边,说明iphone的镜头较好;二是iphone用算法去除紫边了,但这样会导致分辨率的降低。

cd4db7a25a40713e32cf3660e48067df.png

数毛党再次登场,看人像的衣服领子,p20可以看到细细的纹路,iphone8基本看不到,由此可以推断,上面iphone8的紫边是算法去除的,所以在这里也把衣服的纹路给抹去了。

50aa5349a2ec13683d01a825e72a8e7a.png

100%放大后可以看到,p20基本能辨认完全站点大写的字母,而iphone8只能辨认少数诸如C这种。

27ac67323e01604f2264addf70c0c78a.png

注意看最右边的黑色铅笔的笔杆,iphone8的暗部细节颜色层次要比p20要好。

小结一下,跟标版测试一样,p20在分辨率上要略好一点点,而iphone8在宽容度上要略好一点点。

低光下的实际测试

此环节测试按照说明,是在28lux下用全自动模式拍摄而得。

0285f2895cc5234c3587d47f7259ef31.png

这次不数毛了,因为低光环境iso上升导致无毛可数…

我们看那一圈小字,100%放大的话可以看到iphone8还是可以辨认清楚的,而p20这时就有些勉强了——这是为什么呢?前面不都是p20分辨率更高么?大家看一眼iso就明白了,我知道可能会有人喊不公平,但别忘了,p20是没有光学防抖的,这就意味着为了不让照片糊成一片,就只能抬高iso降低画质。

13dbc386ab7dd421141603e98b23b27e.png

结果跟上图一样,分辨率要比iphone8差一些了。两台机子高光一样溢出。

9118dccc2ac74e228c23b6d7a0dc30be.png

同样的,暗部宽容度iphone8是要好一些。

总结

在理想画质下,p20pro的分辨率稍微要高一点,同时,iphone8的宽容度要好一些。这个结论很好理解,p20是4000万像素,理所当然要比1200万像素的分辨率要高,但受限于手机镜头素质(不会真的有人以为那是徕卡吧),4000万像素远远没有发挥出实力,所以仅比1200万像素要好那么一点点点;但4000万像素带来的副作用就是单个像素面积小,造成宽容度较低,所幸整块cmos面积较大,所以宽容度才比iphone8差一点点点。

而在非理想情况下,因为p20没有光学防抖,只能依靠提高iso来防止手抖,导致画质下降严重。

关于实际拍摄中小白常用的ai模式徕卡滤镜,这个比较主观,各个人试过才知道自己喜不喜欢。

至于超级夜景,个人觉得就是官方炫技用的鸡肋,且不说没多少人会拍星空银河,会拍星空银河的人也不会拿手机拍,就算要拿手机拍,iphone8的宽容度更好拿电脑堆栈效果会更好,硬要跟我扯方便程度ios也有app可以做到。

该摆的证据都摆了,最后一句话,半斤八两。

c2ad9c123c4d84295e50d901fd065b58.png

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值