整数因子分解问题
http://acm.sdut.edu.cn/onlinejudge2.dev/index.php/Home/Index/problemdetail/pid/1722.html
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
大于1的正整数n可以分解为:n=x1*x2*…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6*2;
12=4*3;
12=3*4;
12=3*2*2;
12=2*6;
12=2*3*2;
12=2*2*3。
对于给定的正整数n,计算n共有多少种不同的分解式。
Input
输入数据只有一行,有1个正整数n (1≤n≤2000000000)。
Output
将计算出的不同的分解式数输出。
Sample Input
12
Sample Output
8
算法一(超时)
算法思路:
比如以 12为例,情况1)与 情况2)都应该计算在Count中,但情况2)是根据情况1)产生的。因此需要递归,每层函数对i进行遍历一遍,如果temp/i==0,说明该层的数可以被分解,再递归进入下一层。
代码:
1 #include
2 #include
3 using namespacestd;4
5 intCount;6
7 //来计算整数因子分解问题
8 void func(inttemp) {9
10 for (int i = 2; i < temp; i++) {11 if (temp%i == 0) {12 Count++;13 func(temp /i);14 }15 }16 }17
18 intmain() {19
20 Count = 0;21 inttemp;22 cin >>temp;23 func(temp);24 cout << Count+1 <
算法二(优化)
算法一存在的弊端:我们求(i,temp/i)中 temp/i 的因式分解个数时,会重复计算(如下图)
解决算法一的策略:我们采用一个数组直接存储数字6的因子,如果发现该arr[6]中存在数,则直接用避免重复计算。
算法思路:
依然采用递归,t = i * j,则 count(t) = count(i) + count(j);为避免重复计算 (t = i * j = j * i),应该限制 i < j,即 for(i;i