PHP递归法因式分解,[分治算法]因式分解

整数因子分解问题

http://acm.sdut.edu.cn/onlinejudge2.dev/index.php/Home/Index/problemdetail/pid/1722.html

Time Limit: 1000 ms Memory Limit: 65536 KiB

Problem Description

大于1的正整数n可以分解为:n=x1*x2*…*xm。例如,当n=12 时,共有8 种不同的分解式:

12=12;

12=6*2;

12=4*3;

12=3*4;

12=3*2*2;

12=2*6;

12=2*3*2;

12=2*2*3。

对于给定的正整数n,计算n共有多少种不同的分解式。

Input

输入数据只有一行,有1个正整数n (1≤n≤2000000000)。

Output

将计算出的不同的分解式数输出。

Sample Input

12

Sample Output

8

算法一(超时)

算法思路:

20191013132142302603.png

比如以 12为例,情况1)与 情况2)都应该计算在Count中,但情况2)是根据情况1)产生的。因此需要递归,每层函数对i进行遍历一遍,如果temp/i==0,说明该层的数可以被分解,再递归进入下一层。

代码:

1 #include

2 #include

3 using namespacestd;4

5 intCount;6

7 //来计算整数因子分解问题

8 void func(inttemp) {9

10 for (int i = 2; i < temp; i++) {11 if (temp%i == 0) {12 Count++;13 func(temp /i);14 }15 }16 }17

18 intmain() {19

20 Count = 0;21 inttemp;22 cin >>temp;23 func(temp);24 cout << Count+1 <

算法二(优化)

算法一存在的弊端:我们求(i,temp/i)中 temp/i 的因式分解个数时,会重复计算(如下图)

20191013132142382684.png

解决算法一的策略:我们采用一个数组直接存储数字6的因子,如果发现该arr[6]中存在数,则直接用避免重复计算。

算法思路:

依然采用递归,t = i * j,则 count(t) = count(i) + count(j);为避免重复计算 (t = i * j = j * i),应该限制 i < j,即 for(i;i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值