微分matlab程序,数值微分及其matlab程序.doc

41528d3028836879cd698677c3999917.gif数值微分及其matlab程序.doc

第八章数值微分1282一阶导数的数值计算及其MATLAB程序821差商求导及其MATLAB程序例821设215SINXF(1)分别利用前差公式和后差公式计算的近似值和误差,取4位小数点790 F计算,其中步长分别取,80,,0,H“XF1,0(2)将(1)中计算的的近似值分别与精确值比较79 F解(1)编写计算的一阶导数计算的近似值和误差估计的XY FMATLAB程序,并输入X079H01,001,0001,00001M80X1XHX2XHYSIN5X221Y1SIN5X1221Y2SIN5X2221YQY1Y/H,YHYY2/H,WUABSHM/2,SYMSX,FSIN5X221YXDIFFF,X运行后屏幕显示利用前差公式和后差公式计算的近似值YQ,YH和误差估计790 FWU,取4位小数点计算,其中步长分别取,M80,导函数10,1,HYXYQ146596380397978422848550173043444250759584697446320955293622YH596885352366536468672022108227448833808130555446779260847907WU400000000000000040000000000000004000000000000000400000000000YX10COS5X221X(2)计算的值输入程序790FX079YX10COS5X221X,WUQABSYQYX,WUHABSYHYX运行后屏幕显示利用前差公式和后差公式计算的近似值与精确值的绝对误差790FWUQ,WUH和的精确值YX如下FYX446550187104484WUQ299953806706506023701636931441002299427519787000229231810861WUH150335165262053022121835003744002283621026072000229073743424822中心差商公式求导及其MATLAB程序利用精度为的三点公式计算的近似值和误差估计的MATLAB主程序2HOXFFUNCTIONN,XI,YX,WUCSANDIANH,XI,FI,MNLENGTHFIYXZEROS1,NWUCZEROS1,NX1XI1X2XI2X3XI3Y1FI1Y2FI2Y3FI3XNXINXN1XIN1XN2XIN2YNFINYN1FIN1YN2FIN2FORK2N1YX13Y14Y2Y3/2HYXNYN24YN13YN/2HYX2FI3FI1/2HYXKFIK1FIK1/2HWUC1ABSH2M/3WUCNABSH2M/3WUC2N1ABSH2M/6第八章数值微分12END利用精度为的三点公式计算的近似值和误差估计的MATLAB主程序2HO XFFUNCTIONX,YXJ,WUCSANDIAN3H,XI,FI,MYXJZEROS1,3WUCZEROS1,3X1XI1X2XI2X3XI3Y1FI1Y2FI2Y3FI3FORT13ST2T5Y14T2Y22T3Y3/2HXXIYSTYXJTYIFT2WUC2ABSH2M/6ELSEWUC123ABSH2M/3ENDEND例823设已给出的数据表8–5XFY表8–5X10000110001200013000140001500016000FX02500022680206601890017360160001479M07502,试用三点公式计算下列问题1当H01时,在X10000,11000,12000,13000,14000,1500FY0,16000处的一阶导数的近似值,并估计误差;2当H02时,在X10000,12000,14000,16000处的一阶导数的近似值,并估计误差;3当H03时,在X10000,13000,16000处的一阶导数的近似值,FY并估计误差;4表8–5中的数据是函数在相应点的数值,将1至3计算的一阶21F导数的近似值与的一阶导数值比较,并求出它们的绝对误差21XF解(1)保存M文件SANDIANM,SANDIAN3M;(2)在MATLAB工作窗口输入如下程序SYMSX,Y1/1X2YXDIFFY,X,1,YX3DIFFY,X,3,运行后将屏幕显示的结果为YXYX32/1X324/1X5(3)在MATLAB工作窗口输入如下程序H01XI10000H16000FI02500022680206601890017360160001479X1000116YX324/1X5MMAXABSYX3N1,X1,YX1,WUC1SANDIANH,XI,FI,MYXJ12/1XI3,WUYXJ1ABSYXJ1YX1H02XI10000H16000FI02500020660173601479X1000116YX324/1X5MMAXABSYX3N2,X2,YX2,WUC2SANDIANH,XI,FI,MYXJ22/1XI3,WUYXJ2ABSYXJ2YX2H03XI10000H16000FI025000189001479X1000116YX324/1X5MMAXABSYX3X3,YX3,WUC3SANDIAN3H,XI,FI,MYXJ32/1XI3,WUYXJ3ABSYXJ3YX3第八章数值微分12或H101,X10000,11000,12000,13000,14000,15000,16000F02500,02268,02066,01890,01736,01600,01479XIX13F11F13M07502X11,YXJ11,WUC11SANDIAN3H1,XI,F11,M,XIX46F12F46X12,YXJ12,WUC12SANDIAN3H1,XI,F12,M,XIX57F13F57X13,YXJ13,WUC13SANDIAN3H1,XI,F13,M,H202,XIX125F21F125X21,YXJ21,WUC21SANDIAN3H2,XI,F21,M,XIX226F22F226X22,YXJ22,WUC22SANDIAN3H2,XI,F22,M,XIX327F23F327X23,YXJ23,WUC23SANDIAN3H2,XI,F23,M,H303,XIX137F31F137X31,YXJ31,WUC31SANDIAN3H3,XI,F31,M,将运行的结果(略)823理查森外推法求导及其MATLAB程序(一)一般形式的理查森外推法及其MATLAB程序利用理查森外推法计算的近似值和误差估计的MATLAB程序 XFFUNCTIONDY,DY,JDW,NDIFFEXT1FUN,X0,JDWC,MAX1H1J1N1JDW1XDW1X1X0HX2X0HDY1,1FFUN,X1FFUN,X2/2HWHILEJDWJDWCJDWC00000001,MAX1100DY,DY,JDW,NDIFFEXT1FUN,X0,JDWC,MAX1,WU446550187104484DY运行后屏幕显示的近似值DY,DY与精确值的绝对误差WU,导数近似790 F0 XF值的迭代矩阵DY,JDW|DYN,NDYN,N1|的值,最佳近似值DY的坐标N如下DYCOLUMNS1THRO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值