多维多重背包问题_背包问题系列一:01 背包、完全背包

本文详细介绍了动态规划中的两种经典背包问题——01背包和完全背包。01背包约束为每种物品仅有一个,完全背包允许无限数量的同种物品。文章阐述了状态转移方程、优化方法,并提供了相关题目的示例,帮助读者深入理解这两种背包问题的解决策略。
摘要由CSDN通过智能技术生成

点击上方“蓝字”一键关注

「背包问题」 是经典的动态规划问题,它一共有 9 个分类,建议耐心阅读,理解之后你的动态规划水平一定会有一个质的飞跃。

先来浏览一下这 9 个问题的名称:

  1. 01 背包问题
  2. 完全背包问题
  3. 多重背包问题
  4. 混合背包问题
  5. 二维费用背包问题
  6. 分组背包问题
  7. 背包问题求方案数
  8. 求背包问题的方案
  9. 有依赖的背包问题

首先,这些问题具有一个共同的前提:

n 个物品和容量为 V 的背包,第 i 件物品的体积为 c[i],价值为 w[i]。现在的目标是确定要将哪些物体放入背包,以保证在体积 「不超过背包容量」 的前提下,背包内的 「总价值最高」

b5edd397a70e9b8acf0a086986ced72d.png

其次,基于以上前提条件,通过添加不同的约束条件,就形成了不同的背包问题。

1. 01 背包问题

约束条件:每种物品数量为 1,可以选择放或不放

状态转移方程

状态定义:f[i][v] 为前 i 「个」 物品中,体积恰好为 v 时的最大价值。

result = max(f[n][0~V]) 即最终答案,它表示前 n 个物品的最大价值,假设这时容量为 k ,由于 0 <= k <= V,因此容量要在 0~V求最大值来寻找 k

状态转移方程:

f[i][v] = max(f[i-1][v], f[i-1][v-c[i]] + w[i])

以上得到的状态 i 和状态 i-1 关系是从 「实际意义」 推断出来的。

如果 「不选第 i 个物品」,那么前 i 个背包的最大价值就是前 i-1 个物品的价值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值