python 验证码去除干扰线,python 对验证码图片进行降噪处理

本文介绍了使用Python对验证码图片进行降噪处理,包括二值化去除干扰线,以及通过判断像素点周围环境消除孤立的黑色像素点,有效提升验证码识别的准确性。
摘要由CSDN通过智能技术生成

python 对验证码图片进行降噪处理

发布时间:2018-05-16 20:38,

浏览次数:962

, 标签:

python

首先贴一张验证码上来做案例:

第一步先通过二值化处理把干扰线去掉:

from PIL import Image # 二值化处理 def two_value(): for i in range(1,5): #

打开文件夹中的图片 image=Image.open('./Img/'+str(i)+'.jpg') # 灰度图 lim=image.convert('L')

# 灰度阈值设为165,低于这个值的点全部填白色 threshold=165 table=[] for j in range(256): if

j

bim.save('./Img2/'+str(i)+'.jpg') two_value()

运行结果图如下:

然后对黑白图片进行降噪,去掉那些单独的黑色像素点:

from PIL import Image # 去除干扰线 im = Image.open('./Img2/1.jpg') # 图像二值化 data =

im.getdata() w,h = im.size black_point = 0 for x in range(1,w-1): for y in

range(1,h-1): mid_pixel = data[w*y+x] # 中央像素点像素值 if mid_pixel <50: #

找出上下左右四个方向像素点像素值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值