引言
图像是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体,是人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。研究表明,人类获取的视觉图像信息在人类接受的信息中的比重达到75%,“百闻不如一见”便是非常形象的例子之一。在高度信息化条件下的今天,数字图像越来越得到普及和应用。
然而,人们在获取和传输数字图像的同时,难免于图像数据被外界噪声所污染,妨碍了人们对图像信息的理解。由此,图像去噪技术应运而生。图像去噪,即在尽可能地不损失原图像细节的前提下,去除图像中无关的噪点。现有的图像去噪方法[11很多,如:
1 均值滤渡器
均值滤波器是一种典型的线性去噪方法,因为其运算简单快速,同时又能够较为有效地去除高斯噪声。因而适用面较广。
许多滤除噪声方法都是在此基础上发展而来的。其缺点是严重破坏了图像的边缘,模糊了图像。
低通滤波器,信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的;而在较高频段,感兴趣的信息常被噪声所淹没。因此。一个能降低高频成分幅度的滤波器就能减弱噪声的看的见的影响。这是一种频域处理法。在分析图像信号的频率特性时,一幅图像的边缘、跳跃部分以及颗粒噪声代表图像信号的高频分量,而大面积的背景区则代表低频分量。用滤渡的方法滤除其高频部分就能去掉噪声,使图像得到平滑。但同时,有用的高频成分也滤除了。因此这种处理是以牺牲清晰度为代价的。
3 中值滤波器
中值滤波器是一种消除噪声的非线性处理方法,它是由Tueky在1971年提出的。它的基本原理是把数字图像或数字序列中一点的值用该点的一个邻近各点值的中值代替。中值定义如下&

本文介绍了图像去噪的重要性,并探讨了MATLAB中几种去噪方法,如均值滤波器、低通滤波器和中值滤波器。提出了一种改进的均值滤波器,通过噪声检测后再进行滤波,以减少对图像细节的损失。通过实例展示了在图像上添加噪声并使用改进的均值滤波器进行处理的效果,证实了该方法在保留图像细节和去除噪声方面的优越性。
最低0.47元/天 解锁文章
433

被折叠的 条评论
为什么被折叠?



