量子计算机与易经,易经卦象的演化过程,就是一个量子计算机模型?

文章探讨了易经卦象的演化过程与量子计算机模型之间的相似性,指出两者都是在不确定性中通过推演寻求结果。量子理论中的混沌和塌缩概念与易经起卦的过程相呼应,都是从无定局的状态到确定结果的转变。作者提到,通过特定的条件和方法,如梅花易数,可以对未来的演变进行预测,这在现代科学视角下可以类比为量子计算的模拟过程。尽管这种推演在某些人眼中被视为玄学或迷信,但随着科技的进步,量子理论的出现为理解这一过程提供了新的角度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

易经卦象的演化过程,就是一个量子计算机模型

易经

量子计算机模型,看来要更加接近易学模型,甚至易学卦象就是量子计算机的一个运作机制,

当事情还没有发生的时候,输入一个初始值,通过模型推演,就可以得出结果,

易经卦象的演化过程,就是一个量子计算机模型

有起卦推演事情经验的人,大致知道起卦的一个过程,

动念了,想起某件事情,想知道结果,

或者事情已经开始,但是想知道整件事情演化的最后结果,

这个时候,在特定的时间,空间中,起了一卦,

民间有卜吉凶的方法,就看阴阳组合,比较直接简便,

复杂点的有梅花易数之类的,按照一定的条件起六爻卦来分析,邵雍等大师级别,完全可以分析的像放电影一样的,把未来的事情先看一遍,

也有用奇门遁甲,六壬神数,太乙神数去推演事物的演变过程,

至于,这个推演过程有多准确,多神奇,是客观存在于世界的事情,至于个人是否有机缘去了解,那是自己的世界观问题。

其实这个过程,我们更多的认为是玄学,甚至有些人认为是迷信的事情,不科学,

随着人们对世界的理解,在现代科技的基础不断的一步一步去了解这个世界,

发展到量子理论,这个起卦推演事物发展过程,就是一个全息模拟量子从混沌到塌缩的过程,

事物在发展的过程中,还没有定局,是有无限的可能,多种可能的,在量子学里面称之为不可测,

易经卦象的演化过程,就是一个量子计算机模型

混沌的状态,阴阳未分的状态,也叫做量子纠缠状态,

那么,当进行观察了,进行推演了,就好像实验薛定谔的猫一样,

一旦观察,一旦推演,量子纠缠状态就会塌缩成一个准确的结果,就可测的,

所有的事物发展是世界上所有因素的总和导致的结果,

按照,历史的经验,任何事物总是唯一确定的,那么未来也是按照惯性,按照一定的趋势在演化的,

事物的发展,必定按照着一定的趋势,有唯一确定的结果。

如果认定了事物的发展是有一定的结果的,

或者事物的发展是有一定的规律的,

易经卦象的演化过程,就是一个量子计算机模型

那么把这套全息演化模拟模型找出来,好像方程式一样,

输入了初始值,就可以得到结果,

或者说确定了限制条件,整个方程的曲线趋势是可知的。

回复下面关键字获取更多诗歌

仓央嘉措、投稿、余秀华、冯唐、三毛、席慕蓉、艾青、北岛

莫言、林徽因、泰戈尔、方文山、海子、冰心、郭沫若、臧克家

李白、杜甫、文天祥、苏轼、李清照、李商隐、

司马相如、卓文君、诗经、唐诗、宋词

<think>嗯,用户问的是如何量化《周易》卦象模型参数的映射关系。这个问题看起来挺有意思的,结合了传统文化和现代技术。首先,我需要理解《周易》卦象的结构。《周易》有64卦,每卦由6个爻组成,爻分为阴爻和阳爻。可能的表示方法包括二进制、数值编码或者向量化。比如,阴爻是0,阳爻是1,这样每个卦可以转换成一个六位的二进制数,或者十进制数值。 接下来,模型参数通常是机器学习中的权重矩阵或者向量。可能需要将卦象转换成适合模型输入的维度。比如,使用嵌入层将每个卦映射到高维空间,或者将六爻的结构对应到参数的结构上,比如六维向量。另外,也可以考虑卦象之间的关系,比如使用图神经网络来捕捉卦卦之间的变化。 然后,用户可能需要具体的代码示例。比如,如何将卦象转换为数值,再输入到神经网络中。可能需要用PyTorch或TensorFlow实现一个简单的模型,展示如何将卦的编码作为输入特征。或者,使用卦象的结构来初始化模型参数,比如卷积核的大小对应爻的数量。 还要考虑应用场景,比如文本生成、分类任务等,不同的场景可能需要不同的映射方式。例如,文本生成中,卦象可能作为隐变量影响生成过程;分类任务中,可能作为特征输入。此外,卦象的变化规律(如变卦)可能模型参数的更新规则结合,比如在优化过程中引入卦象变化的逻辑。 最后,相关问题需要围绕实现方法、数学基础、应用场景和挑战展开。比如,如何用二进制表示卦象,数学上如何建立映射关系,实际应用例子,以及遇到的挑战如维度匹配或语义保留问题。</think><< 量化《周易》卦象模型参数的映射关系需要结合符号系统数值化方法。以下是具体实现步骤和代码示例: 1. **卦象编码方法**: - 二进制编码:阴爻(⚋)为0,阳爻(⚊)为1 - 数值编码:将6位二进制转换为十进制 - 向量编码:创建6维向量表示每个爻的位置 ```python # 卦象到数值的转换示例 gua_dict = { '䷀': [1,1,1,1,1,1], # 乾为天 '䷁': [0,0,0,0,0,0] # 坤为地 } def gua_to_tensor(gua_symbol): import torch return torch.tensor(gua_dict[gua_symbol], dtype=torch.float32) print(gua_to_tensor('䷀')) # 输出:tensor([1., 1., 1., 1., 1., 1.]) ``` 2. **参数映射策略**: ```python # 创建神经网络映射层 import torch.nn as nn class GuaMapping(nn.Module): def __init__(self, input_dim=6, hidden_dim=64): super().__init__() self.embedding = nn.Embedding(64, hidden_dim) # 64卦对应64种嵌入 self.transformer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=8) def forward(self, gua_input): return self.transformer(self.embedding(gua_input)) ``` 3. **卦变参数更新**: ```python # 模拟卦变的参数更新规则 def yarrow_stalk_update(optimizer, gradient): """ 蓍草算法启发式参数更新 """ import random if random.random() < 0.25: # 模拟25%变异概率 return gradient * random.choice([-1, 1]) return gradient # 自定义优化器示例 class YarrowOptimizer(torch.optim.Optimizer): def step(self): for group in self.param_groups: for p in group['params']: if p.grad is None: continue d_p = yarrow_stalk_update(self, p.grad.data) p.data.add_(-group['lr'], d_p) ``` **数学映射基础**: 设卦象集合G = {g | g ∈ {0,1}^6},模型参数空间Θ ⊆ ℝ^d 建立映射函数:f: G → Θ 满足: 1. 保序性:g₁ < g₂ ⇒ ||f(g₁)|| < ||f(g₂)|| 2. 对称性:变卦操作对应参数空间线性变换 3. 连续性:相邻卦象的参数距离小于阈值ε **应用场景**: - 使用卦象作为神经网络初始化参数 - 将卦变过程建模为状态转移矩阵 - 构建基于易经的符号-数值混合模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值